ИССЛЕДОВАНИЕ ҺАРЦИАНЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР 'P И '

С АМ АРК АНДСКИЙ ІОСУДАРСТВЕПНВЫ МЕ.ДИЦИIIC КИЙ УНИВЕРС ИTーТ

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР P^{31} И S 32

М．Х．ЖАЛИЛОВ，У．Р．АРЗИБЕКОВ，Ш．Н．ХУДОЙКУЛООВА，

 Исследованис парциальных канялив фоторасाルеплниня ялер P 31 и 32 ．Muногряфия．－Симарканд：СамГМГ，2022，－ 140 е．
BEK： 22.383

У．Iた： 539.143

Рецензенты：
Г．Ахмсдова－доцент кафедры Ядерной 中изики и астрономии СамГУ，кандидат（ризико－математических наук．
Б．Н．Бурхонов－старший преподаватель кифедры Физики， бнофнзики и медицннско і̆ фнзики СамМУ，кандидат фн－ зико－мaтематическнх наук．

Аннотация

 набльпдасмых у всех агоміьых идер，являетея эффекктивным сродстиом нссісдования пысоковозбужлленнгх состояний．$В$ этом нлане домниирует нзучсние дипольнок гигииского реъонаиса （ $\llcorner\cdot \mathrm{P}$ ），ктгориыlі был открилт чуп болес 75 лет гому назад．Эй） открытис пкиштось богатьм по свосму физниескому содсржанино． Экспсрименты по парциальньм фотоядериьмм рс山кциям считанотся одним из эфююктивных мстодов нзучсния ДГТ．

В даиной монографии наиримередвух ядер $\boldsymbol{p}^{\text {¹ }}$ и S^{32} описываолси （ $\gamma, X(\gamma)$ ）－эксисрименты，в которых регистрируічіск γ－фотоны，X－ неретистрируомая вьшстившая нз ядра частииа（иротон，неітрои ॥ т．д．）．Обсуждаотся особсниостн постановки таких эксиериментин， иринцины их интергрстации и конкретныс физниеские резулитаты． Подчеркивачгяя важность совместного анани＇за данных（ $\gamma, \mathrm{X} \gamma$ ）－ экспсриментон и эксперимситов по спектрометрии частиц． Монография сиитастся научным изданием и может быть полсзной студситам（иинкам，магистраитим，а также науиным сотрудникам в данноія сфсре нсслсдований．

ISB $\mathrm{N}: 978-94+3-866(0)-4-1$

М．Х．ХКинніов，У．Р．Арзибсков，ШІ．Н．Худойкулова， 2022 «TIBBIYOT KO＇ZGUSI» 2023

В плане изучения гигантских резонансов различных мультипольностей, наблюдиемых у всех атомных ядер, доминируст изучснис динольного гигантского резонанса (ДГР). Связано это с тем, что существующие методы его исследования на фотонных пучках обеспечивают получение надежной и разнообразной информации.

В ранних исследованиях ДГР основнос вннманис удслялось пробллеме его формирования. В фотоядерных экспериментах на тормозных пучках исследовались главным образом эффективные сечения поглощения γ-квантов атомными ядрами. Эти исследования позволили установить универсальность ДІРР для всех ядер и достичь понимания сравнительно грубых его свойств. Дальнейшее совершенствонание эксисриментальных мстодик привело к обнаружению сложной структуры ДГР, которую не удалось объяснить в рамках традиционных теоретических подходов. Детальное описание структуры ДГР требует изучить как процессы его формирования, так и распада. Совместный пнализ этих двух сторон процесса позволяет более глубоко вскрыть природу ДГР и извлечь новую информацию о коллективных ядерных возбуждениях в области энергий возбуждсния до 50 M ВВ.

В последиие годы получили интенсивное развитие эксперименты по изучению так называемых парциальных каналов фоторасщепления. Фотоядерные эксперименты по изучению парциальных каналов фоторасщепления ядер сводхтся к измерению энергетических спектров продуктов ренкции: фотонуклонов или γ-квантов, снима-

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

ющих возбуждение конечных ядер. Оба экспериментальных метода реализуются в основном на пучке тормозного γ-излучсния. Использование Ge(Li)-детекторов большого объема для регистрации γ-квантов сделало наиболее перспективным метод измерения спектров γ-квантов, возникающих в результате ($\gamma, \mathrm{X} \boldsymbol{\gamma}^{\prime}$)-процессов, где X частица (протон, нейтрон, альфа-частица и др), а γ) - фотои, снимаюший возбуждение конечного ядра и регистрируемый в данной реакиии.

Процессы формировиния и распада ДГР наиболее детально исследованы для ядер начала и конца /d2s-оболочки [1]. К числу наиболее существенных физических результатов этих исслсдований следует отнести наблюдение конфигурационного расщепления ДГР для ядер указаной области [2,3], заключающегося в расщеплении по энергии дипольных переходов нуклонов из внешней $I d 2 s$-оболочки (переходы группы А) и из внутренней $/ p$ оболочки (переходы группы Б). Центр тяжести переходов второго типа располагается при более высоких энергиях. Другим вแжным рсзультатом указанных исследовиний является оценка роли различных механизмов фоторасщепления и прежде всего вывод о большой вероятности распада входных дипольных состояний с вылетом нуклона непосредствснно в непрсрывный спектр (так называемый, полупрямой распад). Помимо полупрямого механизмп в формировании и распаде ДГР участвует и статистический механизм реакции. Последний включает предравновесную и равновесную стадии фотоядсрной реакции и объединяет все процессы, начиная с распада входных $/ p / h$-возбуждений на состояния типа $2 p 2 h$. Важно отметить и цснность результатов изучения возможности применсния к ДГР концепции изоспинового расщеплсния.

Однако информация такого характера для ядер середины $I d 2$ s-оболочки явно нодостаточна. Это не позволяет дополнить сведениями о перечисленных выше главных осо-

бенностях процесса фоторасщепления объщую систематику данных о ДГР ядср $/ d 2 s$ оболочки и получить достаточно законченную картину дипольного фоторасщепления указанной области ядер.

На основс вышсизложенного задачей наших исследований было получсние новых экспериментальных данных о парциальных фотоялерных каналах распада ДГР ${ }^{3 /} \mathrm{P}$ и ${ }^{32} S$ методом ($\gamma, \mathbf{X} \gamma^{\prime}$)-реакций и интепретация этих данных. Выбор ядер ${ }^{3 /} \mathrm{P}$ и ${ }^{32} S$ в качестве ойъектов исслсдования обусловлен следуюцимн причиними: во-первых, эти ядра относятся к группе малоисследованньгх ядер середины $/ d 2 s$-оболочки; во-вторых, сведений о распадных характеристнках ДГР указанных ядер явно нсдостаточно, особенно для ядра ${ }^{3 /}$ Р. Имеюшаяся информация для ядер ${ }^{3 /} \mathrm{P}$ и ${ }^{32} S$ касается в основном эффективных сечений фотонуклонных рсакций и то данные о парџиильных фотонсйтронных ссчсниях для ядра ${ }^{3} S$ практически отсутствуют. Вместе с тем, для ДГР ядра ${ }^{32} S$ выполнен ряд корректных теоретических расчетов, в чпстности [4]. Сравнение данных этих рисчстов с ожидиемыми результатами наших исследований позволит проверить эффективность экспериментальной методики и используемых методов интерпретации данных.

Эксперименты выполнены на пучке тормозного γ-излучения бетатрона НИИЯФ МГУ. Посредством Ge(Li)детектора большого чувствительного объёма ($100 \mathrm{~cm}^{3}$) измерялись спектры γ-квннтов, снимаюцих возбуждение консчных ядер реакций. Для ядер $/$ d2s $^{\prime}$ оболочки име ется довольно обширная спекгроскопическыя информация. Это с одной стороны позволяет выполнить обработку экспериментальных результатов по γ-спектрам распада конечных ядер, надежно отделив вклад кяскадных γ-псреходов, а с другой - дать физическуюо интепретацио результатов с привлечением данных реакций однонуклонной передачн. Использовылись методы интерпретации, разработанные в НИИЯФ МГУ [1,2,5,6].

[.IABA I

ОБЗОР ЭКСПЕРИМЕНТАЛЬНЫХ И ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР \mathbf{P}^{31} и \mathbf{S}^{32}

Для ядри р"' имеются динные 0 сечениях фотопротонной и фотоноітронной реакции, спектрах фотонуклонов, измеренных при отдельных значениях $\mathrm{E}_{y^{\text {mux }}}$, и спектрах γ-квпнтов, снимаюших возбуждение конечных ядер, образуюџихся в различных фотоядерных реакциях. Экспериментальныс данные по сечению полного поглощения фотонов отсутствуют. Также отсутствуют и теоретические расчеты ДГР ядра $\mathrm{P}^{3 \prime}$.

Больще всего работ посвящено исследовщнию сечения фотонейтронной реакции. Однако, во многих из них изучена только низко энергичная ($\mathrm{E}_{\mathrm{y}}<22 \mathrm{M}$ МВ) область ДГР ядра P^{31}. Наиболее точные сведения о сечснии фотонейтронной реакции получены в рпботах $[7,8]$, в которых исследование охватывает область ДГР вплоть до 30 M В. В работе [7] фотонейтронная реакция исследовилась на пучке тормозного γ-излучения, а в работе [8] фотонейтроннос сеченис измерено с помощью квазимонохроматических фотонов. Энергетическое разрешение для энергий $20 \mathrm{MэВ}$ в указанных работах состивляло 100 и 200 кэВ соответственно. Полученные

Рис.І. Сечение фотонентрониой рсикнии 凡ля $P^{\prime \prime}$, пияучсинос ия иучке тормозных фотонов [7]

 фutullos [8].
фотонейтронные сечения предоставлены на рис. 1 и 2. Эти сечения довольно хорошо согласуются между собой как по форме, так и по положению отдельных резонансов. Общей особенностью сечений является большая ширина ($\sim 10 \mathrm{M}$ М) гигантского резонанса, максимум которого расположен в области 21-23 МэВ.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

Интегральные величины фотонейтронных сечений для P^{31} согласно $[7,8]$ составляют 211 ± 20 и 192 ± 12 МэВ.мб соответственно.

Пунктирная линия - вклад реакции $\mathrm{P}^{31}(\gamma, \mathrm{np})$
Данные работы [8] свидетельствуют также и о большом вкладе сечсния реакции (γ, np) в полное фотонейтронное сечение. Сечение рсакции ($\gamma, n \mathrm{p}$) [8] показано на рис. 2 экспериментальными точками и пунктирной линисй. Всличина интегрального сечсния этой реакции до 30 M ВВ достигает ~ 50 МэВ,мб.

Фотонейтронная реакция исследовалась также и с помощьк других методик. Так в работе [9] методикой навсденной активности измерсна кривая выхода фотонейтронной реакции от порога до 60 МэВ. Получена довольно детальная информация об энергетической зависимости ссчения реякции $\mathrm{p}^{31}(\gamma, n)$. Она изображена на рис.3. Представляет ннтерес то, что сечение нмеет значительную величину и обладает резонансной структурой вплоть до энергий 60 M эВ. Энергетическое разрспение данного эксперимснта - 500 кэВ. Ширина максимуми ДГР составляет примерно 9-10 МэВ. Интегральная величина сечения до 30 МэВ - 15 МэВ.мб. Фотопротонное сечение для ядра P^{31} исследовилосв в работе [10]. Энергстический ход сечения рсакции $\mathrm{P}^{31}(\gamma, \mathrm{p})$ приведен на рис.4. Максимум ДГР согласно этим данным приходятся на энергии $21-22$ МэВ, а его ширина составляет $\sim 10-10.5$ МэВ. Интегральная величина сечсния фотопротонной реакции до 30 M ВВ составляет 330 ± 50 МэВ.мб. С учетом величины интегрального сечения для фотонейтронной реакции $[7,8]$ сечение полного поглощсния составит $530-540$ МэВ, мб, что нссколько превышает величину 465 МэВ,мб, предсказуемую дипольным правилом сумм Томаса-Райха-Куна (60 NZ /А МэВ.мб).

Болиную информаюию о природе ДГР дают

Рис.3. Экенриментальное фотопеітронное сечение для длра $\mathrm{P}^{\prime \prime}$
141.

Рис.む. Эксикриментальнос фотопротоное сечсине для ялра $\mathbf{P}^{\prime \prime}$

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ШОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

эксперименты по измерению спектров фотонуклонов для различных частсй гигантского резонанса. Для ядра P^{31} также сведения содержатся в работах [11-13] (измерялись спектры фотопротонов).

В этих работах выдвигаются аргумснты в пользу существования конфигурационного расщепления ДГР ядра P^{31}. Авторы показывают, что состояние с энергиями возбуждения до 20 M ВВ главным образом распадаются на основное состояние консчного ядра, а состояния с энергиями возбуждения $22-27$ МэВ распадаются на возбужденнье состояния конечного ядра. Действительно, такой характер распиди совпадает с предсказаниями концспции конфигурационного расщепления.

На конфигурационное расщепление указывают тикже данные экспериментов по определению энергетических зависимостсй парциальных сечсний фотонуклонных реакций с образованием консчных ядер в огдельных состояниях. Также эксперименты для ядра Р¹ выполнены в работах $[14,15]$. В $[14]$ методикой времени пролета с шагом $\Delta \mathrm{E}_{\gamma}^{\text {max }}=1 \mathrm{M}$ эВ от 15 до 23 M эВ измерсны спектры фотонеитронов. Спектры фотопротонов получены в работс [15]. Измерения проводились на пучке тормозного излучения. Верхняя граница тормозного γ-излучения измснялись с шагом 1 МэВ от 14.6 до 25 МзВ. Авторами указанных работ получена вероятность образовния ядер P^{30} и Si^{30} в основном и возбужденных состояниях. Парцицльные сечения $\left(\gamma, n_{1}\right)$-реакций ны ядре P^{31}, полученныс из спсктров фотонсйтронов приведены на рис.5, а для парциальных фотопротонных реакций в табл.। (см.столбец 5) представлены интегральные значсния их сечении.

Анализ имеющихся экспсриментальных данных для ядра P^{31}, проведенный в работе [1], позволил авторам установить, что переходы из $1 \mathrm{~d} 2 \mathrm{~s}-0$ болочки сосрсдоточсны в облисти 20 M 3 B , а центр тяжссти переходов их 1 р-оболочки располагается при энергиях
М.Х. ЖАЛИЛОВ, У.Р. АРЗНБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

Рнс.5. Паринальныс сечеиня (γ, nl) -реакии॥ на gape $\mathbf{P}^{\prime \prime}|14|$

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНА.ЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{313}$ И S 32

Рис.6. Полиое сеиеине фотонейтронион реакции ия

не менее 25 M 3 B . Вероятность переходов из внеиней 1 d 2 s -оболочки, по тем же данным, составляет ().7-1.0.

В работе [14] покизано, что в облиети энергий >19 МэВ вероятность распида ДГР ядра ри на основноє состояние конечного ядра ${ }^{\wedge}$ уменьшается, но увеличиниется вероятность образования конечного ядра в состояниях с изоспином $T=1$. Такой характер распада ДГР ядра ${ }^{31}$ обусловлен его изоспиновой структурой. Согласно [14] сечения рсакций $(\gamma, n)_{0}$ и $(\gamma, n)_{1.45}$ (см.рис.5), в формировании которых доминируег $\mathrm{T}_{<}$- компонента ДГР расположены в основном нижс 19 МэВ. В то же время сечения реакций $(\gamma, n)_{0.7}$ и $(\gamma, n)_{3,1}$, в формировянии которых доминирует T, -компонента ДГР, расположены в основном выше 19 M эВ. Согласно оценке, основанной на результатах работ [16, 17] величина изоспинового расщсплсния для ядра ${ }^{31}$ составляет ~ 3 МэВ.

Эксперименты по измерснию как спектров фотонуклонов, так и парцияльных сеџений фотонуклонных реакıий $[14,15]$ имеוот тот недостаток, что, в случаях, когда $\Delta \mathrm{E}_{\text {п }}^{\text {nax }}<\Delta \mathrm{E}_{i}$, т.е. в области энергий высоко лежащих уровней конечного ядра, парциальное
М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

Конечние ядро	$\begin{gathered} \mathbf{E}_{0}, \\ (\mathbf{M o B}) \end{gathered}$	J^{*}	EC'S	(γ, p)-эксперимент [15]	($\mathrm{y}, \mathrm{X} \boldsymbol{\gamma}$) --3кеперімент	
					[18]	[19]
$*$	0	$0{ }^{+}$	0.62	$\begin{gathered} 1.07 \pm 0.01 \\ 0.9 \pm 0.03 \end{gathered}$	5.2 ± 0.2	7.3 $\ddagger 0.9$
	2.24	$2{ }^{4}$	0.91			
	3.50	$2 \cdot$		0.77 ± 0.04	0.8 ± 0.3 1.1 ± 0.3 0.4 ± 0.1	$\begin{gathered} 3.8 \\ 2.8 \pm 0.6 \\ 0.5 \pm 0.15 \end{gathered}$
	3.77	$1+$	0.34			
	3.79	$0{ }^{+}$				
	4.83	3.		2.29 ± 0.07		
	5.23	$3{ }^{+}$	1.49			
	5.37	$0{ }^{4}$				
	5.61	$2+$				
	6.54	2^{4}	1.06	1.46 ± 0.08	0.2 ± 0.05	0.1 ± 0.05
	6.74	(1)				
	6.87	(3)				
	7.08	(1,3) ${ }^{\text {c }}$				
	7.26	$2{ }^{1}$		(1.91)		
	7.44	$0{ }^{*}$				
	7.67					
	8.14		1.29			
	8.78					
	8.92					
	9.25	(1-3)				
	29.5			(7.4.)		
${ }^{30} \mathrm{P}$	0.68	0			-	2.0 ± 0.3
	0.71	1^{*}			3.1 ± 0.8	2.4 ± 0.6
	1.45	2			1.0 ± 0.2	1.3 ± 0.2
	1.98	$3+$			2.0 ± 0.4	0.7 ± 0.3
	2.54	31			-	0.6 ± 0.2
	2.72	$2 \times$			\cdot	0.7 ± 0.2
	2.94	2			\cdot	1.1 ± 0.4
	3.02	$1+$			0.5 ± 0.2	0.7 ± 0.2
	5.42				0.3 ± 0.1	0.1 ± 0.03

Tadinua 1.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{33}$

сечсние (или спектр фотонуклонов) может содсржать в нсраздсльном виде вклад нескольких парциальных фотонуклонных каналов. Недостатком указанных работ является также то, что в них относительно низкая величина $\mathrm{E}_{\boldsymbol{\gamma}}^{\text {mux }}$ (23 и 25 M эВ соответственно) позволяет исслсдовать лишь часть ДГР ядра ${ }^{\text {I }}$. Всё это в свою очередь сказывается на корректности оценок различных характеристик фоторасшепления исследуемого ядра. Так, ограниченис по энергии тормозного излучсния не позволяет выделить экспериментально $1 p \rightarrow 1 d 2 s$ компоненту ДГР ядра P^{31}, а неопределенность интерпрстации парциальных сечений заселения высоковозбуждснных уровнсй консчных ядер, приводит к довольно широкому разбросу в оценке вероятности переходов их внешней оболочки. По той же причине трсбуется дополнитсльная проверки справедливости концепцин изоспинового расщеплсния для ядра ${ }^{3 \prime}$.

Действительно, в сечсние реакций $(\gamma, n)_{0.7}$ и $(\gamma, n)_{3.1}$ могут давать сравнимый вклад переходы как с $\mathrm{T}_{\text {- }}$ - так и с $\mathrm{T}_{>}$- состояний. Отмстим также, что получснное, в конечном счете, в работе [14] полное сечение фотонейтронной реакции (рис.6) не согласуется с данными упомянутых выше работ [7, 8] (рис.1 и 2). Наблюдаемое отличис сечений в области энергий выше 20 МэВ связанно с тем, что при построении сечения (γ, n)реакции авторами работы [14] учитывался лишь распад ДГР ядри P^{31} на состояния конечного ядра ${ }^{\text {c }}$ имеющие энергии возбуждсния не вышс 5.4 M эВ. В то же время хорошо известно [1|-13], что для ядер $1 \mathrm{~d} 2 \mathrm{~s}-о б о л о ч к и ~$ при энергиях возбуждения $\mathrm{E}_{\gamma}>20$ МэВ распад ДГР происхолит главным образом на высоковозбужденные $\left(\mathrm{E}_{\mathrm{i}}=6-10 \mathrm{M} 3 \mathrm{~B}\right)$ состояния консчного ядра.

Недостаточность информации о ($\left.\gamma, \mathrm{p}_{\mathrm{i}}\right)$-каналах для высоколежащих уровней конечного ядра " [15], частично связанная и с относительно низкой величиной $\mathrm{E}_{\gamma}^{\text {mux }}(25 \mathrm{M}$ Э $)$, приводят авторов этой работы к весьма

спорной оценке вероятности полупрямого механизма распада ДГР ядра ${ }^{3 \prime}$. Вклад полупрямых процессов в полное сечение фотопротонной реакции согласно [15] составляет 53%. В этой работе величина 1.91 МэВ.мб/ ср - сеченис заселения группы уровнсй с $\mathrm{E}_{\mathrm{i}}>7.08$ МэВ (см.табл.1, столбец 5), получена нс из экспсримента, а определена с учетом коэффициента пропорциональности между величинами остпльных, наблюдаемых на эксперимсн'е сечсний и суммой спсктроскопичсских факторов соответствующнх групп уровней. Таким образом, в работе [15] для определения вероятности полупрямых процессов используется величина сечения не опрсделенная непосредствснно из эксперимента, причсм авторы считаюот, что заселение уровней, проявляющихся в реакциях подхвата, полностью происходит за счет эсмиссии полупрямых протонов. Такая ситуация может иметь место только в тех случаях, когда заселяемыс состояния, проявляюциеся в реакциях подхвата, являются чистыми дырками. Однако, в данном случае это не так (см.§l главы III). Очевидно, полученная в работе [15] оценка вероятности полупрямого механизма является предварительной и требует дополнительных уточнений.

Независимыми экспериментами, позволяюшими получить более детальную информацию о заселении высоколежащих состояний конечных ядер, являюотся $(\gamma, \mathrm{X} \gamma)$)-эксперименты. Для ядра P^{31} к настоящему времени имсются данные днух таких эксперементов [18, 19]. Эти данные приведеныв 6 и 7 столбцах табл. $1 .(\gamma, X \gamma)$)эксперименты позволяют исследовать одновременно как фотопротонный, так и фотонейтронный каналы распала ДГР ядра ${ }^{\prime \prime \prime}$. Однако эти эксперимснты дали довольно скудную, особ́енно для фотонейтронного канала, информацик о заселении высоколежаших уровней. Объясняется это видимо низкой эффективностью регистрации γ-квантов $\mathrm{Ge}(\mathrm{Li})$-детектором. Данные

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ゅОТОРАСЩЕПЛЕНИЯ ЯДЕР \mathbf{P}^{11} И S 12

работ $[18,19]$ плохо согласуются, причем в ряде случаев имсет место различис в $3-4$ раза. В работе [18] не наблюдается заселение нескольких уровней. В целом отсутствуст согласие в 9 каналах из 14 .

Сравнительный анализ данных экспериментов по измерению спсктров фотонуклонов [15] и спсктров γ - квантов, снимаюощих возбуждение конечных ядер [18, 19], обнаруживает сильное различие в величинах интегрыльных сечсний рсакций $\left(\gamma, p_{1}\right)$ и (γ, p_{2}) (см. табл.І). Так, для уровня 2.24 МэВ величины сечений различаюотся в 5-8 раз. Причина данного разногласия не ясна. Отметим, что данные работы [15] для ($\gamma, p_{"}$) и (γ, p_{1})-каналов нсюлохо согласуются с данными прямых [13] и обратных [20] реакций. Согласно последним парциальные сечения (γ, p_{Δ}) и (γ, p_{1})-реакций составляют 1.55 ± 0.02 и 1.81 ± 0.01 МЭВ,мб/ср соответствонно. В работах [18, 19] ниблюдастся заселснис уровней конечного ядра $\mathrm{Si}^{3 \prime 1}$ с энергиями лишь до $5-6 \mathrm{M}$ МВ.

Этих данных явно недостаточно для выявления причин различия в величинах ссчсний, получснньх в двух различных типах экспериментов. Необходимы допол-нительные ($\gamma, \mathrm{X} \gamma$))-эксперименты с выделением сечений заселения высоколежащих (с E_{i} вплоть до 10 $\mathrm{MэВ}$) уровней консчного ядра Si ${ }^{30}$.

В заключении отметим, что на основании имеюшейся к настоящему времени экспериментальной информяции о фоторисщеплении ядра P^{31}, пока трудно детально исследонать главные особснности формирования и распада ДГР этого ядра. Для большинства из них: величины конфигурационного и изоспинового распепления, вероятности дипольных псреходов из внсшней оболочки, вероятности полупрямого механизма, величин сечений высоколежаших уровней конечных ядер - получены пока лишь качественные выводы, которыс требуют уточнения и подкрепления новыми экспериментальными данными. В этом плане,

очевидно, необходимы фотонуклонныс экспсримснты, охватывающис всю область ДГР. Особую цснность имест выполненныс в настоящей работе ($\gamma, \mathbf{X} \gamma$))-эксперименты с применением высокоэффективных $\mathrm{Ge}(\mathrm{Li})$-детекторов, которые позволяют прояснить ситуацию в области высоколежащих состояний конечных ядср.

ДГР ядра S^{32}, по сравнснию с ядром P^{31}, исследован болееполно. Нмеюшаясяэкспериментальная информация по фоторасщеплению ядра $\32 также в основном касастся эффективных сечений и спектров фотонуклонов. В последние годы появались работы, посвяшенные исследованию распадных хирактеристик возбужденных состояний. Остановимся на нанболес информативных экспериментальных работах по исследованию ДГР ядра S^{32}.

Полнос сечение фотопоглопения непосредственно измерялось в работах [21, 22]. На рис. 7 приведены данныс этих работ. Оба полученных сечения имеют максимум при энергии $\sim 19-20$ МэВ. Ширина гигантского резонанса равна ~8-10 МэВ. Интегрыльныс величины указанных сечений полного поглощения до 30 MaB равны $400-$ 420 МэВ.мб, что составляет $80-90 \%$ от классического дипольного правила сумм (480 МэВ.мб). Часто используется сечение полного поглощения, полученнос как сумма сечений фотопротонной и фотонейтронной реакций. Одно из таких сечений (используются данные реакций (γ, p) [23] и (γ, n) [24]) приведено на рис.8. Как видно, детжльного согласия в форме прсдставлснных на рис. 7 и 8 сечений не наблюдаются. Последнее сечение более сложние по форме пनонаруживвет несколько хоропо ныделяемых структурных особенностей. Максимум гигантского резонанса в данном сеченин приходится на энергию $\sim 21-22$ МэВ. Ширина сечения

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{\prime \prime}$ И S ${ }^{32}$

Рис.7. Сечение полмого ноглощенин фоіином для ялри $5^{2 \prime} 110$ данинм рмботы [21| (4) и |22| (b)

Pис.J. Ceченре палного поглонения, получениье суммярованием геченй рязличных фотовуклонных репкпий [23,24]

 ленным риботы |2.3| (точки) а | 10 ((линия)

Pис.IV. Ilилные сеченая
 получениые ІІ пучке тормозных |24| "1 квазимонохромитических фотонон|8|

составляет ~ 8 МэВ, а интегральная величина, в отличие от ссчений [21, 22], лучше согласуются с классической дипольной суммой н составляет $468 \pm 60 \mathrm{MaВ.мб}$.

Фотопротонная реакция на ядре S^{32} исследовилась в работах $[10,23,25]$ на пучке тормозного излучения. B двух последних измерялиси спектрия фотопротонов. Энергия возбуждсния ДГР в работе [25] достигала 23 M ВВ, а в работах [10,23] 28-30 МэВ. Интегральная величина фотопротонного сечения по данннм [25] составляст $260 \mathrm{MoВ}_{\mathrm{\imath}}$ мб. В работс [10] для регистрации фотопротонов нспользовался метод сцинтилляционных спектрометров. Основной особоенночтыо измеренного сечения (оно показано на рис. 9 сплошной линисй) является болышия ширина (9.5 МэВ). В работе [23], где для регистрации фотопротонов использовались полупроводниковые счетчики, получена более детальная форма сечения фотопротонной реакции

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 12

на ядре S^{32} (рис.9, точки с ошибками), Сечение имест ряд отчегливых и интснсивных максимумов при $17,19.5,22$ и 25 M 3 B .

В максимуме ДГР ($\mathrm{E}_{\gamma}=22 \mathrm{M}$ ВВ) сечение достигает величины ~ 90 мб. Ширина гигантского резонанса составляет ~ 8 МэВ. Из рис. 9 вндно, что мсжду абсолютными значениями предоставленных сечений имеется различие. Указанное различие обусловлено тем, что исходныс дифферснциальныс сечсния измерены под разными углами, а полныс пересчитывались умножением на 4π. Отметим, что общим для двух представленных на рис. 9 сечений является большая всличина сечсния при энергиях $\mathrm{E}_{\mathrm{y}}>23 \mathrm{M} 9 \mathrm{~B}-30-40 \%$ от полного интегрального сечения реакции (γ, p). Интегральная величина фотопротонного сечения до 30 МэВ по динным [10,23] равна 350 ± 50 и 361 ± 50 МэВ, мб соотвстственно, Іто составляет $\sim 70-75 \%$ сечения полного поглощения γ-квантов. По-видимому, такой большой вклад фотопротонной репкции и формирует основные структурные особенности сечения полного поглощения (рис. 8 и 9).

Большое число экспериментов выполнено для измерения сечения фотонейтронов реакции. Наиболее точныс сведсния содержатся в работах [8, 24, 26, 27]. Использовались различные методы измерений эффектинного фотонейтронного сечения: Метод прямой регистрации фотонейтронов (тормозной пучок [24], кввзимонохроматические фотоны [8]) и метод наведенной активности $[26,27]$, причем, в последнем исследовалась широкая область энергии возбуждения (до 60 M В). Соответствующие сечения приведены на рис. 10 и 11 . Видно, что все сечения достигают максимума при 20-21 МэВ и затем слабо спадают к 30 МэВ. С увлечением E_{γ} (см. рис. II(б)) эффективное сечсние продолжаст измеряться резонансным обрнзом вплоть энергии до 30 МэВ. Ширина сечения в этой
М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

Pис.ІІ. Полные ссчсиия фотонкйтронной рсакиин для яарв \mathbb{S}^{3}, Нилучсннье метшним паведенной яктипности
области достигает ~ 7 МэВ. Интегральные величины рассматриваемых ссчений $[8,24,26,27]$ предстинлены в табл.2. В третий столбец данной таблицы вписаны интегральные значения сечений, привсденные к одиой величине верхнего предела интегрирования. Средняя оценка интегрального сечения до 30 M МВ составляст ~ 108 МэВ.мб. Видно, что за гигантским резонансом расположена значительная доля ($\sim 30 \%$) интегрального сечения.

Нитегриинные значения поиних сечений фоминейтронноѝ реакиии для ядра S ${ }^{52}$

$\mathrm{E}_{7}^{\text {max }}$, (MJB)		$\begin{gathered} \mathrm{E}^{\mathrm{max}=30} \\ \operatorname{CodE}(\mathrm{M} \supset \mathrm{~B}, \mathrm{M} \overline{)} \end{gathered}$	ссылка
29	103 ± 10	106 $=11$	[24]
30	98 ± 7	98 ± 7	[8]
31.5	138 ± 9	119.5	[20]
62	158 ± 7	110	[27]

Тайтица 2.

> ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНА.ТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р³ И S

Имеются данные и о сечениях реакций ($\gamma, n \mathrm{n}),(\gamma, 2 n)$ и (γ, d) [27, 28]. Суммарное эффективное сечснис этих реакций показано штриховой линией на рис.11(б), его интегральная величина до 60 M В согласно [27] составляет 65 МэВ.мб. Из рисунка видно, что в область ДГР приходится лишь $\sim 30 \%$ указаного сечения, причем наибольший вклад в фотонейтронное сечение в данной области энергий даёт реакция (γ, np). Её интегральное ссченис до 30 M эВ оцснивастся на уровне 11 M эВ.мб [8], а энергетический ход показан на рис.10(б) штриховой линией. Из рис. 11 (б) видно, что в области энергий $\mathrm{E}_{\gamma}>28$ МэВ суммарное эффективное сечение $\sigma(\gamma, \mathrm{np}+\gamma, 2 \mathrm{n}+\gamma, \mathrm{d})$ практически полностью исчерпываст нолнос сечсние фотонейтронной реакции.

Для ядра S^{32} выполнен ряд экспериментов по измерению сечений обратных фотоядерных ренкций [29-31]. Отличитсльная чсрта этих работ - высокос энергетическое разрешение ($10-100$ кэВ). Из данных этих работ с использованием уеловия детального баланса для ядра S 32 легко может быть получено сечение прямой фотонуклонной реакции с образованием конечного ядра в основном состоянии. Полученные таким образом в работах [29-31] все сечения реакций S^{32} $\left(\gamma, p_{0}\right)$ и $\mathbb{S}^{32}\left(\gamma, \mathrm{n}_{\mathrm{o}}\right)$ харак-теризуются большим количеством хорошо разрешенных структурных максимумов, причем имеется определенное сходство в структурных особенностях сечений реакций (γ, p_{0}) и (γ, n_{0}). Это может быть следствием изоспиновой симметрии нуклонных каналов распада ДГР ядра S^{32}, ведущих к заселению основных состояний конечных ядер. Интегральное сечсние рсакции (γ, p_{0}) согласно данным [30] в области 13-22.5 МэВ равно 34 МэВ.мб что составляст лишь 13% от полного (γ, p) сечения, измеренного в этой же области в работе [25]. Напротив, доля сечения реакции $\left(\gamma, n_{0}\right)$ в полном фотонсйтронном сечении, как показано в работе [32] может достигать значительной величины.

Следуст, одняко, напомнить, что в работе [32] спектр фотонсйтронов измерялся методикой времени пролста при различных значениях верхней границы тормозного спектра (от 16 до 32 M эВ с шагом $\Delta \mathrm{E}_{4}^{\max }=2 \mathrm{M}$ В). Из высокоэнергичной части каждого спектр было получсно ссчение реакции (γ, n_{0}) с образованисм конечного ядра S^{31} в основном состоянии. Между тем, первые два возбужденных уровня последнего имеют энергии 0.68 и 0.71 M 3 B , что значительно меныне величины $\Delta \mathrm{E}_{\boldsymbol{y}}^{\text {mix }}$ в анализнруемом эксперименте. Очевндно, вклад (γ, n_{1}) и (γ, n_{2}) - каналов в сечении реакции (γ, n_{n}) авторами работы [32] достаточно надежно не учтен. В силу этого, утвсрждсние, что доля ($\gamma, \mathrm{n}_{\mathrm{v}}$) -канала в полном ссчснии фотонейтронной реакции составляет $\sim 50 \%$ [32], является малообоснованным.

Среди работ по исследованию энергетического и углового распредсления нуклонов наиболышниі интерес представляют работы [33, 34]. Результаты этих работ показали, что угловое риспределсние фотопротонов при энергиях $\mathrm{E}_{\mathrm{y}}^{\text {mux }}<25 \mathrm{M}$ В анизотропно и имест максимум при 90°, а при энергии $\mathrm{E}_{\text {max }} \equiv 34 \mathrm{M} 3 \mathrm{~B}$ для всех энергетических групп протонов ($\mathrm{E}_{\mathrm{p}}=3-16 \mathrm{M} 3$) наблюдастся резкая асимметрия относительно угла 90°. Анализ данных работ [33, 34] с привлсчснисм теоретических расчетов [35] позволил сделать выводы о роли основных оболочечных конфигурации, формирующих ДГР ядра \mathbf{S}^{12}. Так устано⿴лено, что для переходов в основнос сос'ояние консчного ядра P^{31} в области 14-20 МэВ угловое распределение согласуется с предположением о доминирующей роли возбуждений типа $2 \mathrm{~S}_{1 \rightarrow} \rightarrow \boldsymbol{3 p}$, а для переходов на возбуждснннс состояния конечного ядря с энергисй -5 МэВ, в области 19-21 МэВ угловое распределение указывает на определяющий вклад возбуждений типа $1 d_{5,2} \rightarrow 1+2 \mathrm{p}$.

Распыдсние характеристики ДГР ядра S^{12} исслеловани в работах $[5,23,32,36]$ (фотонуклонные эксперименты)

и [37-39] ($(\gamma, \mathrm{X} \gamma))$-эксперименты), причем лучше изучснным оказался фотопротонный канал распада ДГР. В рпботе [23] измерены спектры фотопротонов при нескольких значениях верхней границы $\mathrm{E}_{\gamma}^{\operatorname{mox}}$ спектра тормозных фотонов ($\mathrm{E}_{\text {max }}^{\text {mеня }}$ менаси в интервале 1130 M В с шагом 1 МэВ). Из спектров протонов были получены парциальные сечения реакций $\left.S^{32}\left(\gamma, p_{1}\right)\right)^{31}$ с образованием конечного ядра в основном, первом (1.27 M 3 B), втором (2.23 M 3 B) возбуждснных состояниях, а также в группах неразрешенных состояний с центрами тяжести при $\bar{E}_{\mathrm{i}}=3.3,4.8,6.9,9.5$ и 12.5 M ЭВ. Эти сечения на рис. 15 и 16 изображены в виде точек. Их интегральные значсния будем обсуждать в гл.II (см,табл.9).

Pис.12. Результат целения полиого сечсиия фотопротонно॥ рчшкини для ядря $S^{\prime 2}$ ия кимпонсеты, обуеливлсиные переходами пу разнну иболочек

Интерпрстация парциальных фотопротонных сечсний [5, 36] выполнсна на основе данных о спектроскопических свойствах уровней ядра P^{31} из реакций подхвата протона. Было выделено сечение переходов и" внешней оболочки, формируюпиесся в основном за счет распадов (1 d 2 s$)^{1}(1 \mathrm{f} 2 \mathrm{p})^{\prime}$ конфигураций (группа A), и часть сечения переходов из внутренней оболочки, которая обусловлена распадом $\left(1 \mathrm{p}_{1 / 2}\right)^{-1}(\mathrm{Id} 2 \mathrm{~s})^{2}$ конфигураций (групп Б). Эти сечения показаны на рис.12. Отметим, что в работах $[5,23,36]$ исследована область возбуждения исходного ядра $\leq 30 \mathrm{M} \mathrm{B}$, что не позволяет экспериментально выделить сечение переходов из подоболочки $\mathrm{lp}_{3 / 2}$, поэтому в указанных работах для всличин сечений переходов из подоболочки $1 p_{1 / 2}$ и $1 \mathrm{p}-о б о л о ч к и$ в целом получена верхняя оценка. Последнсе сечение на рис. 12 обозначено точками. Группу А согласно интерпрстации авторов работ [5, 23, 36] составляли сечения реакций $\left(\gamma, p_{u}\right),\left(\gamma, p_{1}\right),\left(\gamma, p_{2}\right)$, $(\gamma, \mathrm{p})_{3.3}$, и $(\gamma, \mathrm{p})_{4.8}$. Остальные сечения были отнесены к псреходным группам Б. Сдвиг вверх по энергии центра тяжести переходов $1 \mathrm{p}_{1 / 2} \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$ относительно центра тяжести переходов $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow \mathrm{If} 2 \mathrm{p}$ составил 1.5 МэВ. С учетом переходов $1 \mathrm{p}_{312} \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$ величина этого сдвига увеличивается до 2.9 МэВ. Таким об́разом, было установлено, что имеет место конфигурационное расщепление ДТР ядра \mathbf{S}^{33}.

Следует подчеркнуть, что приведенные оценки величины конфигурационного расщспнения $Д Г Р$ ядра S^{32} относятся к области энергий возбуждения ниже 30 M МВ. Как уже отмечалось, значительная часть дипольных переходов (-30%) для ядра S^{32} приходится на область энсргий возбуждения выше 30 МэВ. Экспериментальный анализ этой области необходим для окончательного определения величины конфигурационного расщепления. Как следует из данных работы [3], где для ядер ${ }^{23} \mathrm{Na},{ }^{24} \mathrm{Mg}, \mathrm{Al}^{27}$ и Si^{28} анализировалась оболочечная

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

структура ДГР вплоть до энергии возбуждения до 50 МэВ, учст области $\mathrm{E}_{\gamma}=30-50 \mathrm{M}$ В увеличиваст всличину конфигурационного расщепления до ~ 10 МэВ.

Другими существенными результатами работ [5, 23, 36] являются оценка нсроятности переходов нуклонов из внсшнсй оболочки (0.5-1.0) определение полупрямой компоненты той части ()отопротонного сечения, которая обусловлена такими переходами (0.55-0.60), а также сведения о чистоте по изоспину состояний ДГР ядии S^{32}.

Болышинство вышеуказанных оценок характеристик распада ДГР ядра S^{32} получешы на основе даниых о парциальных каналтах лишь фотонротонной репкции. Информяция о парциณльных фотонейтронных сечениях практически отсутствует. Имеющаяся информация о полном сечении репкции (γ, n) на лдре S^{32} явлиется непригодной для дстильного анализа фотонейтронного распада ДГР, а результаты единственной реакции (γ, n_{1}), как уже отмечалось пе могут считаться падежными из-за сривнительного большого шара $\mathrm{E}_{\gamma}^{\text {mas }}$, Вее это обуславливает необходимость дополнительных исследований парциальных каналов фотонейтронной реакции на ядре S^{32}.

Данные о парциильных фотонейтронных сечениях можно получить и путем расчста. Для ядра S^{32} был бы интересен пересчет парциальных фотопротонных сечений в парциальнье фотонейтронные на основе изоспиновой симметрии нуклонных каналов распада ДГР.

Как было отмечено, для ядра S^{32} выполнены и $\left(\gamma, \mathbf{X} \gamma^{\prime}\right)$-эксперименты, В более ранних работах [37, 38] наблюдалось заселение лиши первого и второго возбужденных состояний конечных ядер P^{31} и S^{31}. В работе [39] спектры γ-квантов с энергией до 5.5 МэВ были измерены при варьировании верхней гряницы тормозного спектра от 16.3 до 27.3 M вВ с шагом 1 M 3 B , получены ход сечений заселения ряда возбужденных

Рис.13. Хол сечепий заселения различиых визбуждениых уронлеі консчиых ядер \mathbf{P}^{31} и S^{31} в результвге реакини $S^{12}\left(y_{1}, X_{y}\right)$
состояний конечных ядер (рис.13) и их интегральнне величины. Последнис рассматриваются в гл.ІІ (табл. 9 и 10). Всеполученные в работе [39] сечения спадаюот к 25-26 МэВ, а их максимумы расположены в области $16-20$ МэВ. Хотя данная работа и существенно болес информативная по сравнениио с остальными ($\gamma, \mathrm{X} \gamma$ ')-экспериментами [37, 38], её данные требуют проверки. Более того, в работе [39] относительно низка величина верхней границы тормозного слектра ($\mathrm{E}_{y}^{\text {max }}$ з 27.3 M МВ), весьма скудна информация о парциальных фотонейтронных сечениях. Очевидно, нужен дополнительный ($\gamma, \mathrm{X} \gamma^{\prime}$)-эксперимент с регистрацисй γ-квантов более высоких энергий (вплоть до 10 M В). При таких энергиях проявлснис в γ-слектрах пиков, связанных с заселением высоколежащих уровией конечных ядер более вероятно.

Совместный анализ нидежно провсренных данных ($\gamma, \mathrm{X} \gamma^{\prime}$)- и более полных данных фотонуклонных экспериментов позволил бы решить вопрос о величине конфигурационного расщепления ДТ'Р ядра S^{32},

вероятности переходов $\quad 1 \mathrm{~d} 2 \mathrm{~s} \rightarrow 1 \mathrm{f} 2 \mathrm{p}$, полупрямой компонснте их сечсний, сущсстненно дополнить сведения о чистоте по изоспину состояний ДГР, а также дать обтяснение соотношению между вероятностями протонной и нейтронной эмиссий.

Большинство теоретических расчетов дипольного гигантского резонанса ядра S² было пыполнсно до 1973 г. [26, 40-47], Сравнительно неданно появилась ещё одиа работа [4]. В ранних работах [26, 40-47] основное внимание уделялось воспроизведению положения максимума гигантского резонанса и сюо гросс-структуры. Для этого использовались различные варианты частично-дырочного формализмя (приближение хаотических фаз (RPA) и метод Тамми-Данкова (TDA)), причем варьировались, главным образом, амплнтуды остаточного взаимодействия и ринее недостаточно хорошо известных энергий "нулевого приближения". Делались попытки [26] объсдинсния lplh- подхода и динамической коллективной модели.

Во всех указанных работах учитывалось смешивиние конфигуриций. Большинство расчетов [42, 44-46] ограничнналось 1 plh -воздуждсниями. В работах [41, 47] была учтена сложная структура основного состояния ядра S^{32} (использовались полученные теоретически волновые функции для основного и первых двух возбужденных состояний ядер с $\mathrm{A}=31$ и 32). В остальных случаях основное состояние выбиралось в максимально простом виде, отвеяающем заполнению самых нижних подоболочек. В работе [43] в рисчет принималисв коррсляции в основном состоянии. Использовались остаточные силы как нулевого [41-46], так и конечного [42] радиуса действия с различными амплитудами, типом смешивания и радиальной зависимостью.

сравнительный анализ результатов указанных выше теорстических расчстов ДГР ядра S^{32} и установлсно, что такие параметры, как вид остаточных сил, их амплитуда, форма взаимодействия, используемые для проведения расчетов, не оказывают существснного влияния на характсристики гигантского резонанса. Учет корреляций также не приводит к зачительному изменениюо спектра дипольных переходов (разница между приближениями RPA и методов TDA мала).

Факторами, влияющими на характеристики процесса фоторасщепления, являюттся структура основного состояния ядра и конфигурыции более сложные, чем 1 plh . Дсйствителино, учет структуры основного состояния (учитывалась примесь подоболочки $1 d_{3 / 2}$ в основном состоянии ядра S^{32}) и более сложных конфигураций (общсе число конфигураций составило 64) в работе [41] приводит к усложнснию спектра фотопоглощсния, но существснного перераспределения дипольных переходов и гросс-структуры резонанса ие происходит.

Значителюно болсе сильнос влияние на конфигурационноерасщеплениеи вероятностьпереходов из разных оболочек оказывают эффекты нулевого приближения для энергий одночастичных переходов и преждс всого энсргий дырочных уровнсй. Важность правильного выбора энергий частиц и дырок для колличественных теоретических оценок характеристик фоторасщепления ядра S 32 подтверждается результатами работ [41, 45, 46]. Использование различных значений энергий возбуждения в подоболочках $1 \mathrm{~d}_{92}, 1 \mathrm{p}_{1 / 2}$ и $1 \mathrm{p}_{32}$, как показано в указанных растетах, приводит к изменению энергий дигольных переходов и доли различных частично-дырочных конфигураций в волновой функции дипольных состояний.

В целом, данные расчетов свидетельствуют о существовании конфигуриционного рисщеплсния ДГР ядра S^{32}. Дипольное поглощение фотонов ядром S^{32}

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

в рамках указанных расчетовописываетсяв основном двумя-тремя сильными уровнями, энергии которых находятся в разумном согласии с экспериментальными данными $[8,10,24,26]$. Данные расчетов и эксперимента указывиют на сильнос смешивание гіереходов $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow$ | f 2 p и $1 p_{1: 2} \rightarrow \mid d 2 s$ (переходы этих двух типов располагнются примерно в одной и той же энергетической области). Переходы типа $1 p_{3 / 2} \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$ располагаются несколько вышс. Однако эти расчеты не дают однозначночо отиета на вопрос о величине конфигурационного расщепления. Основная трудность в решении этой проблемы заключнется в выборе энергий дырочных возбуждений в 1 p -оболочке (частичные и дырочные уровни во внсшней $1 \mathrm{~d} 2 \mathrm{~s}-$ бболочке достаточно надежно изучены в реакциях подхватп и срыва). Укизанные расчеты не описывают распалннх характеристик гигантского дипольного резонансп, которыс весьма чувствительны к деталям расцетов и сравнсние с которыми, поэтому является эффективным средством проверки справедливости теоретических моделей.

Для удовлетворительного теоретического описания ДГР ядра \mathbf{S}^{32} и его распадных характеристик необходимо правильно (в соответствии с современными экспериментальными данными по репцциям однонуклонной передачи и квазиупругого выбивания) выбрать энергии нулевого приближения. Для описания парцинльных каналов риспада необходимо также учесть реальную структуру основного состояния ядра и разброс энергии его частичных и дырочных возбуждений.

Важный шаг в этом направлении был сделан в работс [4]. Для описания ДГР ядра S^{32} и сго риспада авторы ряботы [4] используют полумикроскопическую модель ядерных колебяний [48] и комбинированную (микроскопическую и статичтическую) модель распада дипольнных состояний $[49,50$]. В отличие от с'парых работ использовались современные данные реакций

Рис.14. Сечиние полного поглонения γ-кваитоп даи S^{21}, Точки -

однонуклонной передачи для определения реальной структуры основного состояния ядра \mathbf{S}^{32} и энсргии одночастичных дипольных переходов.

Получено описание основных характеристик ДГР и определены вероятности различных механизмов сго распада - полупрямого, предравновесного и идущего через стадиюо составного ядра. Расчет [4] подтверждает существовяник конфигурационного расщепления ДГР ядра S^{32}. Переходы $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow 1$ f2p (см.рнс. 14) располагаются в области энергий до 22 M эВ (центр тяжести переходов - 20-21 МэВ). Значительная часть дипольной силы (30$32 \%$) отщепляется в область более высоких энергий (2427 МэВ), где располагаются состояния, доминирующий вклад в которые дает одна из конфигураций $-\mid p^{-1}{ }_{3 / 2}$ $1 d_{s / 2}, l p_{3: 2}^{-1} \mid d_{3 / 2}$ или $1 p_{3: 2}^{-1} 2 s_{1 / 2}$. Переходы $\mid p_{1 / 2} \rightarrow 1 \mathrm{~d}_{2} \mathrm{~s}$ располагаютея в той же области энергий, что и переходн $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow 1 \mathrm{f} 2 \mathrm{p}$, сильно смсшивяясь с последними. Всличина конфигурационного расщепления достигяет ~ 5 МэВ.

Рис. 14 показывает тыкже, что расчет хорошо описывает основные особ́снности структуры гигантского резонанса и неплохо согласуется с экспериментальными

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{33}$ И \mathbf{S}^{32}

 Сравнепие тсориин [4] и эксичримменга [23]
данными по абсолютной величине.
В расчете получсно описание парциальных сечений реакций $\left(\gamma, p_{o}\right),\left(\gamma, p_{1}\right)$ и $\left(\gamma, p_{2}\right)$ для ядра S^{32}. Результаты расчета показаны на рис.15. Расчет выполнеи в предположении, что рассматриваемые состояния консчного ядра P^{31} (основное и два нижних возбужденных состояния) заселяются только в результате полупрямого распада. Удовлетворительное описание структуры экспериментальных сечений подтверждает полупрямой характер реакций ($\gamma, \mathrm{p}_{\mathrm{u}}$), $\left(\gamma, \mathrm{p}_{1}\right)$ и ($\left.\gamma, \mathrm{p}_{2}\right)$. Расчет описывает и переходы на высокие возбужденные состояния конечного ядра (рис.16). Как показывают авторы расчета, основную роль здесь играют статистические процессы.

Рис.16. Парциальные фотопротонные сечения, отвечаюцие возбужасиио груип уровиеія ядра $\mathrm{P}^{\prime \prime}$.

Столбики и соотвстствующая им сплошная линия данные тсоретического расчета [4]. Светлыс столбики - дипольныс состояния, формирующиеся за счет переходов $\mid p_{3 / 2} \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$

В целом результаты расчста указывают на домннированис полупрямого механизма фоторасщепления в максимуме ДГР $\left(\mathrm{E}_{\mathrm{y}}=21.6 \mathrm{M}\right.$ ВВ), где концентрируются наиболее сильные переходы $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow 1 \mathrm{f} 2 \mathrm{p}$ н $\operatorname{lp}_{1 / 2} \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$. Вероятность полупрямото испускания нуклонов в этоі̆ области энергий достигает $\sim 50 \%$. В районе 30 M ВВ, где расположены дипольные переходы, отвечающие дырочному состоянию $\left(1 p_{3 / 2}\right)^{-1}$ доминирующими становятся статистическнс процессы (их вероятность при таких энергиях может достигать

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{33}$ И ${ }^{32}$

~ 80\%). Авторы расчета устанавливают также, что вероятность полупрямых процессов в фотонейтронном каналерасщепленияядра S^{32} больше, чемвфотопротонном. Этот вывод нуждается в эксперименгальной проверке.

Очевидно, выделяя полупрямые компоненты фотонейтронных ссчений, конфигурационнос расщепление можно наблюдать более отчетливо. Однако экспериментальные данные по парциальным фотонсйтронным сечения длия ядри S^{32} практически отсутствуют. Поэтому необходимы дополнительные исследования таких сечений.

Необходимо подчеркнуть, чторасчет [4], также как и все предыдущие не описываст энертегическую ширину группы переходов $I P_{3 / 2} \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$, поскольку не учитывает сильного разброса дырочного состояния ($\left.\mathrm{IP}_{3 / 2}\right)^{-1}$ (ширина дырки ($\left.1 \mathrm{P}_{3,2}\right)^{-1}$ ядер 1 d 2 --оболочки можст достигать 20 M 3 B). Кроме этого расчет хорошо воспроизводит раепады ДГР только на низколежащие состояния конечного ядра, в то же время он дает занижения парциальных сечений для распилов на высоковозбужденные состояния,

Цифры над сечениями указывают энергетический интервал возбуждения ядра P^{31} (в МэВ).

Точки - эксперимент [23].
Сплошная линия - данные теорстического расчета [4]
B заключении данной главы подчеркнем первоочередные задачи, постановку которых диктует уровень имеющейся экспериментальной и теоретической информации о ДГР ядер P^{31} и S^{32}.

1. Проведение ($\gamma, \mathbf{X} \boldsymbol{\gamma}^{\prime}$)-экспериментов, охватывающих вся область энергий ДГР.
2. Полученис информации о парциальных кинилах фотоорасцепления с выделснисм сечений заселения конечных состояний с эергиями вплоть до 10 M В.
3. Выввление причин расличия данных (γ, p)- и ($\gamma, \mathrm{X} \gamma^{\prime}$)-эксперимснтов для ядра P^{31}.
4. Расчет парциальных фотонейтронных сечений основе принципа изоспиновой симмстрии нуклонных распадов.
5. Уточнение характеристик конфигурационного расщспления (в частности, определение вероятности нуклонных переходов для различных оболочек).
6. Выделение полупрямых компонент парциальных и полных фотонуклонных сечений.
7. Объяснсние соотнопения вероятностей протонной и нейтронной эмиссии.
8. Исследование влияния изоспина на процессы формирования и распада ДГР.

ГЛАВА II

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР \mathbf{P}^{31} И \mathbf{S}^{32} МЕТОДОМ $\left(\gamma, \mathbf{X} \gamma^{\prime}\right)-$ РЕАКЦИЙ

Настоящий эксперемент использует метод измерения спектров γ-квантов, возникающих в рсзультатс ($\gamma, \mathbf{X} \gamma$)процессов и реализован на пучке тормозного γ-излучения бетатрона НИИЯФ МГУ. Эксперимент выполнен при верхней границс тормозного спектра $\mathrm{E}^{\text {max }}=32 \mathrm{M}$ ВВ. Калибровка энергетической шкалы ускорителя проводилась по известным заачениям эергетических порогов и изломов активационных кривых фотонейтронных реакций. Соответствуюшие данные приведены в табл.3. Внход ($\gamma, \mathrm{n})-$ реакции измерялся по b-активности конечного ядра.

Геометрия эксперимента по измерению спектров γ-квантов, снимающих возбуждение конечных ядер, привсдсна на рис.17. Тормозной пучок, генерирусмый на внутренней платиновоЙ мишени бетатрона, пропускался через систему свинцовьхх коллиматоров толшиной 70 см и попадил в экспериментальный зал, который отделен от ускорителя толстой защитной стеной из свинца и бетона (общая толщина - 1.5 м).

Мишень из исследуемого вещества располагалась в пучке тормозньх фотонов на расстоянии 4 м от камеры ускорителя. Геометрическая форма пучка в месте расположения мишени определялась системой коллиматоров, размещенньхх в непосредственной близости от ускорителя, и имела в поперечникс форму круга диаметром 10 см.

Ренкция	Порог реактии
${ }^{6 \prime} \mathrm{Cu}(\%, \mathrm{n})$	10.841 ± 0.010
$\mathrm{O}^{1 \prime \prime}(\gamma, \mathrm{n})$	$17.15 \pm 0.1()$.
$\mathrm{O}^{16}(\gamma, \mathrm{n})$	$21.90 \pm 0.1()$.

Примечинис: (.) -
энергии ижомов в кривой выхода рсакции $\mathrm{O}^{16}(\gamma, \mathrm{n})$. Trainuza 3.

Рис.17. Геометрия ($\boldsymbol{\gamma} \boldsymbol{\lambda} \boldsymbol{\gamma}^{\text {² }}$)-эксперимеити

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S ${ }^{32}$

Пороговые значения и энергии изломов активационных кривых рсакций (γ, n) , использованных для калибровки бетатрона НИИЯФ МГУ

Доза γ-излучения, полученная исследуемой мишенью в процессе эксперимента, постоянно контролировалась с помощью стандартной тонкостенной камеры-монитора, установленной перед коллиматором в ускорительном зале в пучке тормозного γ-изтучения. Информация записыналось самопипуцим потеньиометром КПС-4.

Регистрация γ-квантов, сниманоцих возбуждение конечных ядер, осупествлялось $\mathrm{Ge}(\mathrm{Li})$-детектором коаксиального типа (ДГДК-100А) с чувствительным объёмом $100 \mathrm{~cm}^{3}$. Энергетическос рязрешение $\mathrm{Ge}(\mathrm{Li})$ детектора для энергии 1.332 M МВ (изотоп ${ }^{60} \mathrm{Co}$) состивило 3.5 кэВ.

Рсзультаты измерения спектров γ-квантов могут бьтть сильнонскажены высокнм уровнсм фона. Поэтому, несмотря на наличие защитной стены, разделяюющей ускорителышый и экспериментальны залы и служашей длл снижения потоков фоновнх частиц, образуюпихся при работе ускорителя, был принят ряд специальных мер для уменьшения уровня фона.

Во-первых, $\mathrm{Ge}(\mathrm{Li})$-детектор располагался на расстиянии 35 см от оси пучка тормозного излчения внутри трехолойной зищнты - из парифина тощщина 40 см (наружний слой), кадмия (средний силой) и свннца толщиной $20 \mathrm{cм}$ (внутјенний слой) (см.рис.17). В слоях парафина и кадмия происходит замедление и последующие поглощсние нейтонов в $\operatorname{Cd}(п, \gamma)$-рсакции. Слой свинца служит для поглощения γ-квантов.

Во-вторьх, регистрация γ-квантов осуцествляласъ под болыним углом $q=140^{\circ}$ по отношению к оси падающцго на мишень пучка тормозных фотонов. Импульсы электронов и позитронив, образулощихся в процессе рождения в веществе мишени е ее-пар, направлены преимущественно вперед. Поэтому, такой угол ($q=140^{\circ}$) рсгистрации γ-кнннтов позволяет снизитъ электронную компоненту фона.

В-трстьих, в коллимирующем канале защиты $\mathrm{Ge}(\mathrm{Li})-$ детектора, который выделяет направление на исслсдуемую мишень, прямое направление между мишеньо и Ge(Li)детектором перекрывалось фильтрами из парафиной толщиной 7.5 см и свинца толщиной 3 cm . Это позволило подавить наиболес инченсивную низкоэнсргстичную компонснту фона, обусловленную в основном комптоновским рассеянием тормозного γ-излучения на исследуемой мишени.

Дополнительное снижение уровня фона достигается с помощью пластикового сцинтилляционного детектора (см. рис.17). Использование данного детектора для временной селскцин импульсов γ-квантов, зарегнстрированных $\mathrm{Ge}(\mathrm{Li})$-дстсктором, позволяет установить вклад в экспериментыльный спектр фотонов, обусловленных процессами наведенной активности в веществе мишени. В целом, с помощью перечисленных выше специальных мер, удалось снизить уровенє фона на 3-4 порядка.

Блок-схема аппаратуры, нспользусмої для измерения спектров γ-квантов, снимаоших возбужденне консчных ядер, привсдена на рис. 18. Электронный тракт состоял из стандартных блоков системы "Вектор"- сптктрометричес-

Рис.18. Блик-схема аппаратуры лия измереиия циент рив у-кваитов нз ($(\boldsymbol{\gamma} \boldsymbol{X} \boldsymbol{\gamma})$)-зкспериментов

ИССЛЕДОВАНИЕ ПАРЦИАЛЫНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

кого предварительного усилителя БУС2-96 и спектрометрического усилителя БУС2-97, а также из блоков амплитудно-цифрового преобразователя СА-25 и 4096-канального накопителя импульсов "INTERTECHNIQUE" ВМ-96B. Предусилитель БУС2-96 смонтирован в одном блоке с $\mathrm{Ge}(\mathrm{Li})$-дстсктором. Для уменьшения уровня игумов первый транзистор предусилителя охлаждался вместе с кристаллом дотектора до температуры жидкого азота. С предусилителя импульсы поступали на вход усилителя БУС2-97. Коэффициент усиления блока БУС2-97 подбирался таким образом, чтобы можно было анализировать спектр γ-квантов с энергией до 10 Мэß.

Постоянные врсмсни дифференцирования и интегрирования были установлсны равньтми 3.2 мкс. Сигналы с выхода спектрометрического усилителя подавались на вход амплитудно-цифрового преобразователя СА-25 и далее, в случае совпддеиия по времеии с импульсом тормозного γ-излучення, поступали на память 4096-канณльного аналнзатора импульсов ВМ-9бВ. В случас огсутствия импульсов тормозного излучения накоплсние импульсов γ-квантов, зарегистрированных $\operatorname{Ge}(-$ $\mathrm{Li})$ - детектором, в памяти анализатора не производится. Импульсы тормозного γ-излучения, поступают с выхода пластикового сцинтилляционного детектора, кристалл которого просматриваегся фотоумножителем ФЭУ-30. Импульсы с выхода ФЭУ-30, фиксирующие момент появлсния тормозноюо γ-изуусния, формируются так, чтобы их длительность была равной длительности интенсивности γ-излучения ускорителя ($\tau \sim 30$ мкс, $\mathrm{n}=50$ Гц). Таким образом, анализировались импульсы только тех зарегистрированных $\mathrm{Ge}(\mathrm{Li})$-детектором γ-квантов, которые образуются в веществе мищени в момент прохождения потока тормозньхх фотонов.

Энсргетическая калибровка спектрометрического тракта в области ≤ 3 МэВ проводилась с помощью стандартных радиоактивньх источников, имеющих хорошо известные и ярко выраженные $\gamma-л и н и и{ }^{137} \mathrm{Cs},{ }^{60} \mathrm{Co},{ }^{24} \mathrm{Na}$ [51]. При более
М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

Pис.19. Калибровочиии линия спектрометрического тракта (у,Ху))-зксперимента
высоких энергиях калибровка спектро-метрического тракта производилась с помощыо нєиболее интенсивных γ-линий из различных пдерных реакций (рис.19). На этом рисулке для каждой точки указана природа γ-линии, использусмой для установления соответствия между энергией γ-линии и каналом спектрометрического тракта. Как видно из рисунка калибровочния зависимость спектрометрического тракта являстся линейной в исследусмом дианазоне энергий.

Данные кплибровочных измерений анализировались с помощью метода наименьших квапратов и находились параметры прямой $y=a x+b$, апроксимирующсй эксперимснтальные точкн. Результаты анализа показали, что $\mathrm{a}=9.5 \mathrm{k} \mathrm{B}$. Это значение а и определяет величину энергетического разрешения спектрометрического тракта. Стабильностъ энергетичсской шкалы спсктрометрического тракта систематически проверялась по положенню линий 1.173 и 1.332 МэВ источника ${ }^{\text {п0 }} \mathrm{Co}$. За время измерений уход энергетической шкалы не наблюдался. Это означает, что суммарная ностабильность спектрометрического тракта нс превышает ширину одного кянала, а ошибка в определении энергетической шкалы составляет $\pm 9,5$ кэВ в области энергий до 10 M эВ.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{{ }^{31}}{ }^{3}$ И S 32

Мстодика измерения отлаживалась с помощью исследования спектра γ-квантов из реакции $\mathrm{O}^{1 \text { (1 }}(\gamma, \mathrm{X} \gamma)$). Основной задачей отладки методики измерений является выявление фактов, искажающих первичную информацию (распределение энергий γ-квантов и интенсивности отдельных γ-линий). Выбор ядра O^{16} дия осуществлсния этой задати обусловлсн, во-первых, тем, что для этого ядра γ-спектр из реакции ($\gamma, \mathrm{X} \gamma$)) хорошо изучен [52-54]. Во-вторых, указанный γ-квантов из реакции $\mathrm{O}^{16}(\gamma, \mathrm{X} \gamma)$)

Рие20. Высокознергнчыый участок γ-енектрив из $\mathrm{O}^{16}(\gamma, \mathrm{X} \gamma)$ ряакнии, палученньй при отлддке зксперинситальной методики

Рис.21. Финовые γ-линии, обпаруженные в редультите $\mathrm{O}^{16}(\%, X y)$ эксперимента
позволяет достаточно просто обнаружить фоновые γ-линии в низкоэнергичной части экспериментального γ-спектра.

Исследование спектра γ-квантов из реакции $\left.\mathrm{O}^{16}(\gamma, \mathrm{X} \gamma)\right)$ осуществлялось в диапазоне энергий от 0.6 до $10 \mathrm{MэВ}$ при верхней границе тормозного γ-пучка $\mathrm{E}_{\mathrm{y}}^{\text {max }}=32$ МэВ. Время измерения составило 70 часов. В качестве мишени использовалась вода, налитая в целлофановый пакет. Результаты исследования показали, что наряду с интенсивными максимумами в области 5-6 МэВ (рис.20) наблюдается ряд интенсивных фоновых γ-линий в низко

энергичной части спектра (рис.21). С помошью данных по энергетической калибровке спектрометрического тракта определены энергии этих максимумов (см.табл. к рис.21) и установлено, что возникновение максимумов, представленньх на рис.21 обусловлено γ-переходамн, образующимися ири взаимодсйствии нсйาронов, возникаюпих в манинс, с ядрами зициты и матсриала $\mathrm{Ge}(\mathrm{Li})$-детектора. Такие же γ-линии обнаружены в риботе [55]. Вкл风д γ-квантов, ооразуюшихся в (n,n' γ)-реакциях на ядрах защиты и материала детектора, вэкспериментальный γ-спектр не удается устранить за счет мер, предпринитых для уменьшения уровня фона и описанных выше. Поэтому наблюдасмыс фоновыс γ-линии будут имсть место и в γ-спектрах из друтих миненей. При обработке экспериментальных γ-спектров должен учитываться вєлад этих фоновых γ-линий.

Максимумы в спектре γ-квантов, представленных на рис.20 однозначно идентифицированы с γ-переходами мсжду отдельными состояниями конечных ядер N^{15} и O^{15}. При этом использованы привсденные в райоте [56] схсмы уровней и данные о каскцдных γ-переходах для конечных ядер N^{15} и O^{15}. Против кณждого максимума указаны символ образовавшегося конечного ядра, энергия перехода и физические процессы в детекторе, приводяще к возникновению данного максимума (ППП-полное поглощсние, $O B$ и ДВ-соотвстствснно одиночный и двойной вылет аннигиляционного фогона). Одному γ переходу с энергией E_{γ} в γ-спектре соответствуот три сдвинутые относительно друг друга γ-линии с энергиями $\mathrm{E}_{\gamma}, \mathrm{E}_{y}-0.511, \mathrm{E}_{\gamma}-1.022$ МэВ. Эта особенность γ-спектров является характерной чертой аппаратурной функции $\mathrm{Ge}(\mathrm{Li})-$ детектораиобъясняетсяфизическимиэффектамивматериале дстектора, в результате которых происходит регистрация γ-квантов. Число таких триплетов определяется числом γ-переходов с энергией $\mathrm{E}_{\gamma}>1.022 \mathrm{M}$ 门В (порог процесса обрязование электрон-позитронных пар), проходящих в конечном ядре. Следовательно, в экспериментах с более

сложными, чем O^{16} ядрами, возможно получение γ-спектра с большим числом γ-линий сравнимой интенсивности, причём вероятностъ взаимного наложения разнчньгх γ линий будет увеличиваться. Это обстоятельство усложняет задачу однозначного определения интенсивности отдельной γ-линии, отвсчающей конкретному γ-переходу в конечном ядре. Для определсния интенсивности отдельной γ линии необходимо знать энергетическуюо зависимость эффективности регистрации γ-квантов $\mathrm{Ge}(\mathrm{L} . \mathrm{i})$-детектором в пике полного поглощения, двойного и одиночного вылета для энергий всех исследуемых γ-линий.

Для расчета эффективности регистрациии (GeLi)дстскгора, нснользусмого в наших экслериментах, применен полуэмттрический метод [57], в котором сделано упрощающее предположение о механизме потерь энергии γ-квантами при прохождении через детектор и получены алалитическне выражения, с помощыо программы "EFFI" (см.§2гл.ІІ) наЭВМЕС-1022 проведенрасчегэффективности регистрации используемого нами $\mathrm{Ge}(\mathrm{Li})$-детектора. В полуэмпиричсском мстоде расчега эффективносги [57] наряду с тсоретическими продположениями используются и сведения, полученные непосредственно из эксперимента. Так, при расчете использовпны данные из γ-спектра для ядра O^{16}, полученного при отладке методики измерений.

Результаты расчетов представлены ня рис.22. Для корректировки энергетнческого хода кривой эффективности по пику полного поглощения ($\mathrm{E}_{\gamma}<3.5 \mathrm{M}$ В) проведены дополнительные измерения с помощью стандартного источника Co^{56}, относительные интенсивности γ-линий которого хорошо известиы [51]. Результатъ этих измереєий показаны на рисунке светлыми точками. Темные точки данные для $\mathrm{E}_{\gamma}=6.323 \mathrm{M}$ МВ из γ-спектра, полученного нами в $\mathrm{O}^{16}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-эксперименте.

Результаты расчета кривьхх эффективности $\mathrm{Ge}(\mathrm{Li})-$ детектора введены в память ЭВМ в виде массива числе и используются при обработке экспериментальных γ спектров (блок "EFFI"; см.§2 гл.II).

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНА.ТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}{ }^{31}$ S 12

Ещё одним существенным фактором, искажаюциим истинный γ-спектр, является ослабление потока γ-квантов в исследуемой мишени и в фильтрах на пути к детсктору. Необходимо сделать поправку на это ослабление, поскольку ею обусловлена точность определения абсолютного числа фотонов, снимающих возбуждснис консчного ядра.

При рисчетах должны бытъ учтены следуююиие факторы, влияющие на ослабление потока γ-квантов (рис.23):
a) ослабление тормозного γ-излучения в мишени;
б) ослабление фотонов (γ^{\prime}) из ($\gamma, \mathrm{X} \gamma^{\prime}$)-реакции в мишени;
в) ослабление фотонов (γ ') в фильтрах (свинцовом и парафнновом) на пути к детектору.

Кроме этого, должны учитъваться лсомегрия эксперимента и тот факт, что миІІснь может иметь сложную пространственную форму. Мишени исследуемых ядер ${ }^{311}$ и

Рис.22. Криане зффектинности $\mathrm{Ge}(\mathrm{LI})$-детектора по пиком по.лнити ноглиแивуя (III), цвоиного вылета (ДВ) и одинириого вылета (OB)
\mathbf{S}^{32} имели форму цилиндра и устанавливались так, чтобы их ось совпадала с осью тормозного пучка. Характеристики используемых мишеней приведены в табл. 4.

Харакмеристики мишеней серы и фосфора

Мишень	Изотопическии состав		Bec(r)	Диамстр (ем)	Толинина(см)
	A	\%			
Ссра $S(z=10)$	$\begin{aligned} & 32 \\ & 33 \\ & 34 \end{aligned}$	$\begin{gathered} 95 \\ 0.76 \\ 4.22 \end{gathered}$	716	9	6
Фосфор $P(2 \square \mid 5)$	31	100	653	10	8.4

Тао.тшца 4.
Расчеты ослабления потока γ-квантов в миисени фильтрах выполнилось с помощью программ "TARG" и "FILTR" на ЭВМ EC-1022. Рассмотрим эти расчеты болес подробно. Известно, что интенсивность потока γ-квантов $\mathrm{I}_{\boldsymbol{\prime}}$, прошедших через вешество определяетея интенсивностыо потока γ-квантов I_{0}, падаюощих на даннос вещество, а такжс толщиной x вещества. Такан зависимость имест вид:

$$
I_{y}=I_{0} \exp (-x),(1)
$$

где μ - массовый коэффициснт поглощения. Его можно иредставить в вице суммы коэффициснтов $\mu=\left\{\mu_{\Phi}+\left\{\mu_{\mathrm{K}}+\left\{\mu_{\mathrm{TI}}\right.\right.\right.$, связанных с основными физическими процессами взаимодействия фотонов с веществом фотоэффектом, комптон-эффектом и процессом образование $\mathrm{e}^{+} e^{-}$ппар. Исходя из этого, при вычислении на ЭВМ коэффициента ослабления в мпшени тормозных фотонов и γ-квантов, образованных в ($\gamma, \mathrm{X} \gamma^{\prime}$)-реакиии, целесообразно разбить ее ни достаточно миные (элементирныс) объёмы $\delta \mathrm{V}$ (см.рис.23) и с точностью до этой величины определять геометрическое место взиимодействия тормозного $\gamma-$ излучения с ядром мишепи. При этом козффициегт ослабления K_{M} вычислялся по формуле:

$$
K_{M}=\Sigma_{j-1}^{N} \exp \left(\mu_{M} Z_{1}\right) \cdot \exp \left(\mu_{M} 1\right) / N \text {, (2) }
$$

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{3}{ }^{3}$ И \mathbf{S}^{32}

где μ_{M} - коэффициент поглащения тормозного излучсния в мишени, Z_{i} - расстояние от поверхности мишени до i -го объёма $\delta \mathrm{V}$ на пути тормозного излучения, l_{i} - расстояние от i-го объёма $\delta \mathrm{V}$ до поверхности мишени пройденное фотоном, снимающим возбуждение конечного ядра, в направлении детектора, N -число элементарных объемов $\delta \mathrm{V}$ в мищени. Для минени P^{31} число элсментарньхх объёмов составило N $=212$, и для мишени $s^{»} N=137$. Коэффициент ослабления тормозного излучения в данных мишенях рассчитынается для энергии $\mathrm{E}_{\mathrm{y}}=21 \mathrm{M}$ эВ, которая соответствует эиергии возбуждения в максимуме ДГР. Ослабление фотонов из ($\gamma, \mathbf{X} \gamma^{\prime}$)-реакции в мишени рассчитывается для энергии γ квантов от 0.5 до 10 M 3 B с шагом 0.01 M 3 B .

Pия.23. Поясиение к раєчету ослаитения иотика \boldsymbol{y}-квантив в минени и фильтрах

Коэффициент ослабления фотонов в фильтрах на пути к детектору K_{11} рассчитывается по формуле:

$$
K_{\mathrm{II}}=\exp \left(-\left\{\mu _ { \mathrm { CIB } } \{ \mathrm { d } _ { \mathrm { CI } } \} ^ { \star } \operatorname { e x p } \left(-\left\{\mu_{\mathrm{IIAP}}\left\{\mathrm{~d}_{\mathrm{IIAP}}\right),(3)\right.\right.\right.\right.
$$

где $\left\{\mu_{\mathrm{CB}},\left\{\mathrm{d}_{\mathrm{CB}}\right.\right.$ - коэффициент поглощения и толщина фильтра из свинца, $\left\{\mu_{\text {тарр }}\left\{\mathrm{d}_{\text {тАр }}-\right.\right.$ коэффициент поглощения и толщина (фильтра из парафина. Этот расчет также проведен для γ-квантов с энергией от 0.5 до 10 M эВ с шагом 0.01 МэВ. При расчетах для $\left\{\mu_{\text {м }},\left\{\mu_{\text {сВ }},\left\{\mu_{\text {тАР }}\right.\right.\right.$ использованы данныс работы [58]. Результаты расчстов козффициента ослаблсния γ-квантов в мишшени и фильтрах введены в память ЭВМ в виде массива чисел и используются при обработке экспериментальных γ-спектров (блоки "TARG" и "FILTR", см.§2 гл.II), а в табл. 5 приведены некоторые его значения для отдельных энергий γ-квантов.

$\begin{gathered} \mathbf{E}_{\gamma} \\ (M \geqslant 3) \\ \hline \end{gathered}$	Фильтр		Минени,	
	сөинеи	Іарифин	фосфор	сера
1	0.091340	0.650568	0.5150	0.5993
2	0.213804	0.741378	0.5818	0.6624
3	0.243134	0.786624	0.6128	0.6920
4	0.243134	0.813984	0.6321	0.7082
5	0.236027	0.832938	0.6439	0.7181
6	0.226873	0.846296	0.6523	0.7259
7	0.217951	0.856428	0.6583	0.7312
8	0.209616	0.864831	0.6018	0.7329
9	0.201202	0.871780	0.6634	0.7322
10	0.191766	0.876021	0.6006	0.7369

Таймица 5.

Таким образом, в результате отлидки мстодики измерений, проведенной с помощькя $\mathrm{O}^{16}(\gamma, \mathrm{X} \gamma)$) эксперимента, удается определить результирующие коэффициснты, которые необходимо учитывать ири обработке γ-спектров дия получсния информаиии об

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И \mathbf{S}^{32}

Рис.24. Кривые зависимости режультируюшего поправочного козффиниента (К) от энергии γ-кнаниов (\mathbf{E}_{γ}) для минени серы и фосфора

абсолютіьхх числах фотонов, снимающих возбуждение конечных ядер и об интенсивностях γ-линий, отвечаююцих переходам с конкретного уровня конечного ядра. На рис. 24 представлена зависимость одного из тиких результируюших коэффициентов от $\mathrm{E}_{\text {у }}$ дия мишсни яцер P^{31} и \mathbf{s}^{33}. Динный результируюпий коэффициснт получен с учетом коэффициента ослабления γ-квантов в мишени и фильтрах и эффективности регистряции $\mathrm{Ge}(\mathrm{Li})$-детектора по пику полного поглоцения. Кривые результируюццго коэффициента с учетом эффективности регистрации Ge(-Li)-детектора по пикам двойного и однночного вылета будут иметъ вид аналогичный кривым єявв и $\varepsilon_{\text {ов }}$ (рис.22).

Измсрение спсктров γ-квантов в $(\gamma, \mathbf{X} \gamma$ ')- экспериментах позволяет получить информацию о различных каннлах фоторасширение исследуемого ядра. Использование при измерениях $\mathrm{Ge}(\mathrm{Li})$-детекторов, облядющих высоким энергетическим разрешением, даёт возможность разделить очснь близкие (по знергии возбуждения конечного ядра) канацы рсакиии. В табл. 6 приведсны значения порогов различных фотоядсрных реакиий на ядрях P^{31} и S^{32}.

Измерение спектров γ-квантов, снимагощих возбуждснис конечньхх ядер, провопилось при верхнсй границе энергии тормозного γ-излучения $E^{\text {nах }}=32$ МэВ в условиях, идептичных условиям $\mathrm{O}^{16}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-эксперимента, реализован-ного при отладке методики нзмерений. Время набора экспсриментальной информации составляло в случае с мишсньо из фосфора - 165 час., серы - 142 час.

Исследоншиись спектры γ-квантов в диапазоне энергий от 0,6 до 10 M М. Получснные в настояием эксперемснте спектры γ-квантов из реакций $\mathrm{P}^{31}\left(\gamma, \mathrm{X} \boldsymbol{y}^{\prime}\right)$ и $\boldsymbol{s}^{3}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$ показаны ни рис. 25 и 26. Указаны γ-переходы между уровнями конечньх ядер, формирующие максимумы в спектре, символы образовавиихся конечных ядер, а также в общепринятых обозначсниях физичсскис процессы в детекторе, приводящие к возникновениюо максимума (OB или ДВ). Отсутствие этих букв обозначаег, что данная γ линия появляется в результате полного поглощения (ПП) энергии γ-квантов.

Пороги ризтичныхх фотовдериихх реакчиии па лдрах $\boldsymbol{P}^{\prime \prime}$ и $\mathbb{S}^{\prime \prime}$.

Типн реакıиий	ядро ${ }^{\text {P/1 }}$		ядро S^{31}	
	Іорогі рчакций, (M3B)	концчные ялра	Iороги рсакігий (M3 ${ }^{(1)}$	консчныс мдря
γ, n	12.3	$p^{\prime \prime \prime}$	15.1	S^{11}
γ, p	7.3	Si^{10}	8.9	p^{31}
γ, t	17.9	S $\mathrm{l}^{\text {dx }}$	24.0	p^{19}
$\gamma,{ }^{3} \mathrm{Hc}$	22.5	${ }^{11} 11$	19.1	Si^{24}
$\gamma, 0$	9.7	${ }^{27} \mathrm{Al}$	6.9	$S i^{21}$
$\gamma, 2 n$	23.5	$\mathrm{p}^{\text {dV }}$	28.1	Si^{36}
$\gamma . n \mathrm{p}$	17.9	$\mathrm{Si}^{\text {av }}$	21.2	$\mathrm{P}^{\text {JII }}$
$\gamma, 2 p$	20.8	${ }^{29} \mathrm{Al}$	16.2	Si^{31}

Табиица 6.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{3 \prime}$ И S ${ }^{32}$

Pис, 26. Ilралиджкние

С целью наиболее точного определения соотношения интенсивности различных γ-переходов, имеющих очень близкие всличины энергий, и не разделенные в настоящем эксперименте при установленном энергетическом разрешении (например, γ-переходы с первых возбужденных уровнсй 1.248 МэВ в в 3 и 1.266 MэВ в 31 (рис. 26)), проведены дополнительные измерения y-спектров в области энергий от 0.5 до 5.5 M ЭВ. При этом цена канала спектрометрического тракта была уменьшена примерно в два рази и составила 5 кэВ. Время набора дополнительной информации составило в случас с мишенью из фосфора - 70 час., серы -230 час.

Спектры γ-квантов для ядра P^{31} (рис.25) на ряту с интенсивными γ-линиями при энергиях $1.21,1.26$, $1.46,1.73,2.24,3.5 \mathrm{M}$ МВ и др. наблюдаются и широкие максимумы большой интенсивности в области энергий 5 $-6,5$ МэВ. Анализ спектра показал, что этим максимумы обусловлсны γ-квантами из фоновой рсакции $\mathrm{O}^{16}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$ за счст присутстния некоторого количестна атомон кислорода в исследуемой мишени. Основной притиной большой ширины этих максимумов по отношению к максимумам из $\mathrm{P}^{31}\left(\gamma, \mathbf{X} \gamma^{\prime}\right)$ - рсакции является допплеровскис уширение. Оно более существенно для ядра O^{16}, чем для ядер P^{33} и \boldsymbol{s}^{3}.

Как видно из рис. 25 и 26 , измеренные спектры γ квантов, как правило, содержат большое число $\gamma-$ линий сравнимой интенсивности. Это обуславливаст дополнительные трудности для однозначной интерпретации экспериментальньх γ-спектров. Использование ЭВМ для обработки γ-спектров различными математическими методами позволяет в значительной степени преодолеть возникающис трудности при интерпретации γ-спектров.

В настоящей работе обработка экспериментальных спектров γ-квантов, сопровождаюиих фотождсрныс процессы на ядрах P^{31} и s^{12}, была проведена с помощью комплекса программ [59], реализованного на ЭВМ ЕС1022 (рис.27). Поясним блок-схему обработки спектров γ квантов.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{12}$

 сопровожлиюиних фотоядерные рннкции
Обриботка γ-спектров состояла из ряда этапов. Она начинает с ввода экспериментального спектра в память ЭВМ. Далее, осуществляя поиск γ-линий, определялись их параметры. Данные операции выполнялись с помощью программы ACTIV [60]. Затем, после учета поглощсния γ квантов в мишени и фильтрах, проводимогос помощыо учета поглощения γ-квантов в мишени и фильтрах, проводимого с помощью программ "TARG" и "FILTR" (процедура учета описывалась вьше в \$1 гл.II), устанавливались физический процесс в детекторе, ответственный за проявление данной γ-линии - ПII, ДВ или ОВ. После этого с помощью программы "EFFI" вводилась поправка на зависимость эффектинности регистритии фотона от сго энергии (расчет эффективности описывался нами в §2 гл.ІІ). Итогом данного

этапа обработки была таблица энергий и чисел фотонов для каждой отобранной программой ACTIV γ-линии.

Следуюшим этапом обработки была расшифровка природы γ-линий, то есть определение переходов между уровнями конечных ядер, приводящих к появлению максимума в спектре. В качестве исходных данных ция проведения расшифровки природы γ-линий использовались приведенные в работе [61] данные о ехемах уровней конечных ядер, и каскадньх γ-переходах между уровнями конечных ядер. На основе этих сведений с помощыо программы "CASCADE" устанавливаются вероятности заселения каждого из наблюдаемых возбужденньх уровнсй конечного ядра за счет грямого нуклонного распада дипольньх состояний исходного ядра. Таким образом, учет γ-каскадов позволяет выделить ту часть γ линии, которая обусловлена непосредственным распадом состояний гигантского резонанса. Конечным результатом этого этапа обработки явлиется таблица уровней конечных ядер и интенсивностей заселения этих уровнсй в результате распада ДГР в числах γ-квантов.

Используя данныс этой таблицы с помоџъю программы "INTSEC" определяютея абсолютные величины интегральных сечений заселения отдельных уровней конечных ядер. Эти величины получены с помошыю относительного метода, сущность которого заключена в следующем. Вьход γ-линийдля исследусмого парциального сечения сраннивается с выходом γ-линии для опорного (эталонного) сечения, измеренного в идентичных условиях при том же знпчении верхней границы спектра тормозного излучения. Сопоставляя величины этих виходов, можно определить отношение выходов для исследуемой и опориой реакций:

$$
\mathbf{Y}_{1}\left(\mathbf{E}_{\gamma}^{\text {max }}\right)_{l} Y_{r}\left(\mathbf{E}_{\gamma}^{\text {max }}\right)_{=} N_{l}\left(E_{\gamma}^{\text {max }}\right) J_{i} n_{1} \alpha_{\gamma r} \varepsilon_{\gamma r 1} N_{r}\left(E_{\gamma}^{\text {max }}\right) j n \alpha_{\gamma} \varepsilon_{\gamma,}(4)
$$

где $\mathrm{Y}\left(\mathrm{E}_{\gamma}^{\text {nux }}\right)$ - выход реакция, $\mathrm{N}\left(\mathrm{E}_{\gamma}^{\text {max }}\right)$ - выход γ-лाкнии, j -плотность потока фотонов тормозного излучения, n - число облучаемых ядер мишени, α_{γ} - коэффициент ослабления

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

γ-линий фильтром, расположенным перед детектором, ε_{γ} эффективность регистрации γ-квантов. Индекс r относятся к величинам, определяюцим опорное сечение, а индекс і к исследуемому сечению.

Для определения величин интегральных сечсний исследуемых реакций деластся предноложение о подобии форм $\sigma_{1}^{\text {int }}$ и формы опорного сечсния $\sigma_{i}^{\text {int }}$. В рамках этого предположения отношений вкладов исследуемой и опююнной реакций ривно отношению их интегральньхх сечений

$$
\mathbf{Y}_{1}\left(\mathbf{E}_{\gamma}^{\text {max }}\right), \mathbf{Y}_{r}\left(\mathbf{E}_{y}^{\text {max }}\right)_{-} \boldsymbol{\sigma}_{1}^{\ln (}\left(\mathbf{E}_{\gamma}^{\text {max }}\right), \sigma_{r}^{\text {min }}\left(\mathbf{E}_{y}^{\text {max }}\right),(5)
$$

где $\sigma_{1}^{\ln (}\left(\mathrm{E}_{y}^{\text {nux }}\right), \sigma_{r}^{\text {inn }}\left(\mathrm{E}_{7}^{\text {max }}\right)$ - сечения нсслсдусмоіі и опорной реакций, цроинтегрировянние от пороги до верхнего значения грани!ы тормозного спектра. Соглисно данномц выражению величины интегрыльных сечений для исследуемьх реакциіи могут быть получены следующим образом

В пастояцем эксперименте в качестэе опорного сечения использовилось парциильное ссчсние реикเий $\mathrm{O}^{1 \text { I' }}\left(\gamma, \mathbf{X} \gamma^{\prime}\right) \mathrm{N}^{1.5}$ [62]. Этот парциальный кинал характеризуется значительной величиной интегрального сечения, составляюшего для $\mathrm{E}_{\gamma}^{\text {max }}$ $=30 \mathrm{M} э$ В 22.3 M эВ, мб, вследствис чсюо пик, составляющий заселенио уровня 6.32 M МВ для ядра N^{15} отчетливо проявлястея в спектре γ-квантов (см,рис.20). Вглод γ линии с энергией 6.32 МэВ измерялся нами при отл风дке методики измерения в тех же условиях, что и выход $\gamma-$ квантон в реакциях $\mathrm{P}^{31}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$ и $\mathbf{S}^{32}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$. Абсолотные величины парциальных сечений определены с разтичной погрепностью. Она гланньм образом эивисит от величины статистики экспериментального γ-спектра и точности определения вероятности γ-переходов в конечных ядрах. Срсдняя оценка попрсшности для нацего эксперимента составляет около 30%. Конечным итогом обработки экспериментального γ-стектра является таблица заселяемьтх состояний конечных ядер и значения интегральных сечений их заселения.

В коомплекс программ включены также программы «PARSEC»и«GAMMA».Перваятрограммапредназначена для осуществления пересчета энергетического хода парциальных фотонейтронных сечений из соответствующих парциальньг фотопротонньт сечений на основе изоспиновой симметрии нуклоных распадов четно-чстных самосопряженных ядер. Процедура пересчета будет описана в следующей главе (\$4). Программа "GAMMA" предназначсна для оцснки полупрямой компоненты парциальных интегральных сечений заселсния состояний консчных ядер. Данная программа в качестве исходной информации использует итоговыс данныс программ «NTSEC» или «PARSEC», а также сведения о спектроскопических характеристиках заселясмых состояний конечных ядер. Метод выделсния полупрямой компонснты будет описан в гл.IV.

В результите обработки γ-спектров из ($\gamma, \mathrm{X} \gamma^{\prime}$)-реакций на ядрах ${ }^{31}$ н S^{32} получсны новые сведсния об интегральных сечениях разичньх парциальных каналов фоторасщеплсния этих ядер. В таблицах $7-12$ представлепы интегралыные сечения заселяемых состояний конечных ядер. Здесь же приведена информация о характеристиках заселяемых состояний конечных ядер: их энергия E_{i}, спинах и четностях J , дырочноі̆ природе nlj , спектроскопическнх факторах S^{-} из реакций опнонуклонной псредачи. В последних столб́цах табл.7-10 приведены интегралнне величины полупрямых компонент парцнальных сечений. Рассмотрнм данные этих таблиц. Начнём с экспериментальных результатов дия ядра $P^{\prime \prime}$.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S^{12}

Характернстики заселяемых состояний					$\sigma^{s m(}(\gamma, p)$	$\boldsymbol{\sigma}^{\text {tit }}$ ($\%$,)
i	$\underset{(M)}{E_{1}}$	$J * ; T$	nlj	5	$\begin{gathered} E_{7}^{\max }=32 \mathrm{M} 3 \mathrm{~B} \\ 4_{7}=140^{\circ} \end{gathered}$	$\begin{gathered} a \in 1 ; \\ b_{0}=1,6 ; \end{gathered}$
0	0	0×1	$2 s_{10}$	0.75		1.07
1	2.24	2*;	$1 d_{32}$	2.6	8 ± 1	1.0
2	3.50	2*:1	$1 d_{10}$	0.8	4.7 ± 0.9	0.23
3	3.77	$1{ }^{1}: 1$			$1.0+0.2$	
4	3.79	041	${ }_{2 s}$	0.06		0.06
$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.81 \\ & 4.83 \end{aligned}$	$\begin{aligned} & 2^{*} ; 1 \\ & 3^{+}: 1 \end{aligned}$	$\begin{aligned} & l d_{1: 2} \\ & d d_{5} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 1.5 \pm 0.45 \\ & 0.88 \pm 0.2 \end{aligned}$	0.03
7	5.23	3; 1	${ }^{1} d_{0}$	1.8	0.56 ± 0.2	0.27
8	5.28	4; 1			0.48 ± 0.16	
9	5.37	$0 ; 1$	$2 s^{\prime}$	0.21	0.24 ± 0.08	0.15
10	5.41)	3:1			1.48 ± 0.35	
11	5.101	2:1	$11_{\text {cin }}$	0.46	1,22es0,35	0.06
14	6.54	2:1	$l d_{s a}$	0.38	0.46 (0.0.14	0.09
16	6.74	$1 \cdot 1$				
18	6.87	3*:1	$1 d_{s}$	0.89	0.9 ± 0.12	0.06
22	7.08	$3^{+},\left(1^{*}\right) ; 1$	$1 d_{10}$	0.33		0.02
23	7.26	2*:1	$1 d_{10}$	0.18	0.9 ± 0.3	0.01
27	7.63	2+:1			0.39 ± 0.15	
28	7.67	(1-3) $; 1$	$1 d_{50}$	0.56	0.18 ± 0.05	(0,02
	8.14		$1 d_{10}$	0.41		
	8.78		$1 d_{30}$	0.21		
43	8.90	$1: 1$			1.1 ± 0.6	
	8.92		$1 d_{10}$	0.23		
44	8.95		$1 \mathrm{ld}_{52}$			
50	9.25	$(1-3)^{*} ; 1$	$1 d_{12}$	0.27		
	29.9	$1 \cdots 1$			6-13	

Таблина 7.
М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

Характернстики заселяемых состояний					$\boldsymbol{\sigma}^{\operatorname{lo}(y, n)}$	$\boldsymbol{\sigma}^{\text {inten}}(\%, n)$
i	$\begin{gathered} E_{1} \\ (\mathrm{Mo} B) \end{gathered}$	$J^{*} ; T$	$n l j$	5	$\begin{gathered} E_{\gamma}^{\mathrm{max}}=32 \mathrm{M}_{3 \mathrm{~B}} \\ q_{\mathrm{y}}=140^{\circ} \end{gathered}$	$\begin{gathered} a=1 ; \\ b_{2}=0.6 ; b=1 \end{gathered}$
0	0	1':0	$\begin{aligned} & 2 \mathrm{~s}_{12} \\ & 1 \mathrm{~d}_{32} \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.13 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.19 \\ & 0.69 \end{aligned}$
1	0.68	0; 1	28_{12}	0.74		1.54
2	0.71	$1 ; 0$	$\begin{aligned} & 2 \mathrm{~s}_{12} \\ & \mathrm{Id}_{32} \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.46 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.64 \\ & 2.16 \end{aligned}$
3	1.45	2';0	$1 \mathrm{~d}_{32}$	0.47	1.92 ± 0.9	1.90
4	1.97	3; 0	$1 \mathrm{~d}_{57}$	0.75	3.5 ± 0.7	1.06
5	2.54	3; 0	$1 \mathrm{dd}_{3}$	0.65	0.93 ± 0.32	0.80
6	2.72	2';0	$1 \mathrm{Id}_{92}$	0.49	0.18-0.61	0.57
8	2.94	2';1	$1 \mathrm{~d}_{32}$	2.0	0.66 ± 0.26	0.70
9	3.02	$1^{\prime}: 0$	$\begin{aligned} & 2 s_{12} \\ & 1 d_{12} \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.12 \end{aligned}$	0.54 ± 0.14	$\begin{aligned} & 0.26 \\ & 0.32 \\ & \hline \end{aligned}$
12	3.83	$2^{\prime}: 0$	$\begin{aligned} & 2 \mathrm{~s}_{17} \\ & 1 \mathrm{~d}_{32} \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.41 \\ & \hline \end{aligned}$	0.9 ± 0.3	0.82
15	4.18	2; 1	$1 \mathrm{~d}_{12}$	0.76	0.64 20.21	0.15
20	4.42	$2{ }^{2} ; 0$	$1 \mathrm{~d}_{32}$	0.44	0.24 ± 0.1	0.25
21	4.47	0; 1	28 If^{18}	0.06		0.08
22	4.50	$1{ }^{1} ; 1$	$1 \mathrm{~d}_{12}$	0.01	$0.28 * 0.1$	
24	4.74	$\begin{gathered} (1,3)^{\prime} \\ \quad 0 \\ \hline \end{gathered}$	$1 \mathrm{Id}_{9}$	0.06	0.66 ± 0.12	
28	5.21	$\begin{gathered} (1.3)^{+} \\ i 0 \\ \hline \end{gathered}$	$1 \mathrm{~d}_{92}$	0.24		0.07
31	5.51	$\begin{gathered} (2,3)^{+} \\ \vdots 1 \end{gathered}$	Id_{32}	0.32	0.27 ± 0.1	0.02
32	5.59	2; 1	ld_{32}			
33	5.71	$1{ }^{1} ; 0$	$2 \mathrm{~s}_{12}$	0.05		
35	5.89	$\begin{gathered} (1.3)^{r} \\ i 1 \end{gathered}$	$1 \mathrm{~d}_{52}$	2.0		0.09
38	6.00	1:0	$1 \mathrm{dd}_{32}$	1.6		0
39	6.05	$0{ }^{2} ; 1$	$2 \mathrm{~s}_{12}$	0.29		0

нсна:твзовалая пираметр $\mathrm{b}_{8}=\mathrm{b}_{3}=1$
Tабония 8.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

Характеристики заселяемых состоянай									MBB
i	$\begin{gathered} \boldsymbol{E}_{i}, \\ \mathbf{M}_{3} \mathbf{B} \end{gathered}$	J^{*}	$n l j$	$C^{2} S$	настоящая работа	[39]		[23]	
1	2	3	4	5	6	7		8	9
0	0	1/2	$2 s_{12}$	1.00.1				1.9	1.4
1	1.27	$3 / 2$	$1 d^{10}$	0.75 $=0.1$	3.7 ± 0.7	3.8 ± 1		5.8	3.7
2	2.23	52^{-}	Id_{58}	$2.1=0.2$	22:0.5	2:0.3		3.5	2.2
3 4 5 6	3.13 3.30 3.41 3.51	$\begin{aligned} & 1 / 2^{+} \\ & 5 / 2^{+} \\ & 7 / 2^{+} \\ & 3 / 2^{+} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 s_{1 / 2} \\ & I d_{s / 2} \\ & I d_{s 2} \\ & \hline \end{aligned}$	$\begin{gathered} 0.13 \pm 0.02 \\ 0.6 \pm 0.1 \end{gathered}$	0.9 ± 0.1 1.2 ± 0.1 3.4 0.25 ± 0.05 1.0 ± 0.2		3.0	4.8	$\begin{gathered} 0.07 \\ 0.43-0.55 \end{gathered}$
7									
8 9	4.19 4.26	$5 / 2$ $3 / 2$	${ }_{\text {ld }}^{\text {ld, }}$	0.6 -0.1	0.7 ± 0.1 $0.8 \pm 0 工$	$\begin{gathered} 0.5 \pm 0.1 \\ 1 \pm 0.4 \end{gathered}$			0.28 $=0.44$
10	4.43	7/2-	$1 \mathrm{f}_{1 / 2}$						
11	4.59	3/2*	$1 \mathrm{ld}_{3 / 2}$		$\begin{array}{ll}0.6 \pm 0.2 & 3.3\end{array}$	0.4 ± 0.1	3.3	5.4	
13 14	4.78 5.01 5.0	5/2 $3 / 2$	$1 \mathrm{dd}_{52}$	0.2	0.07-0.13	(0.7 $\pm 0.3)$			0.07-0.13
14 16	5.26	1/2+	$2 s_{1 / 2}$		0.35 ± 0.2	0.4 ± 0.1			
19	5.56	32^{+}	$1 \mathrm{ld}_{3}$	0.	0.4 ± 0.2	0.3 ± 0.15			0.03

Характеркстнкв заселдемых состоявий								$\begin{gathered} \sigma^{\text {lot }} \\ \mathrm{MBB} \text {, MUN/CP } \end{gathered}$
i		$J=$	mily	C^{-2}	Hactorupan paiota	[39]	[23]	
1	2	3	4	5	6	7	8	9
23 27 40 46	$\begin{aligned} & 5.91 \\ & 5.97 \\ & 6.34 \\ & 6.91 \\ & 7.21 \\ & 7.98 \end{aligned}$	$\begin{aligned} & 3 / 2 \\ & 12^{-} \\ & (1 / 2, \\ & 3 / 2)^{\prime} \\ & (1 / 2, \\ & 3 / 2)^{-} \end{aligned}$	$\begin{aligned} & \left(1 d_{s 2}\right) \\ & \left(1 d_{s 2}\right) \\ & 2 s_{13} \\ & \left(1 d_{s 2}\right) \\ & \left(1 P_{1 / 2}\right) \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.14 \\ & 0.11 \\ & 0.79 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.03-9.87 \\ & 0.4-2.1 \\ & 0.027 \\ & 0.8=0.21 \\ & 0.08-0.23 \end{aligned}$	(0.340.2)	63	$\begin{gathered} 0.03-0.07 \\ 0.026-0.07 \\ 0.019 \\ 0.08-0.23 \end{gathered}$
	9.9		$\begin{aligned} & \left(1 d_{52}\right) \\ & \left(1 d_{2}\right) \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.15 \end{aligned}$			85	$\begin{aligned} & 0.005-0.021 \\ & 0.003-0.016 \end{aligned}$
	12.5						5.7	38

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР P^{31} И S^{12}

Характернстыки заселяемых состояний					$\sigma^{6 \prime}\left(\gamma, p_{1}\right), \mathrm{MaB}_{2} \times 1 / \mathrm{cp}$			$\begin{gathered} \sigma^{\text {het }} \\ \mathrm{M} \mathrm{~B}_{2}, \mathrm{~N}_{5} / \mathrm{CP} \end{gathered}$
i	$\mathrm{E}_{4}, \mathrm{M} 3 \mathrm{~B}$	J^{*}	-1]	C-S	пастовпщая раббта	[39]	[23]	
1	2	3	4	5	6	7	8	9
0	0	$1 / 2^{+}$	$2 \mathrm{~s}_{12}$	0.95			0.78	0.78
1	1.25	$3 / 2^{+}$	$1 \mathrm{~d}_{32}$	0.8	1.7 ± 0.6	1.9 ± 0.2	1.38-2.86	1.38-2.86
2	2.24	$5 / 2$	$1 \mathrm{C}_{82}$	2.2	1.9 ± 0.5	1.0 ± 0.3	0.68-1.54	0.68-1.54
3	3.08	$1 / 2^{-}$	$2 \mathrm{~s}_{12}$	0.14			0.48	0.041
4	3.29	$5 / 2^{+}\left(3 / 2^{+}\right)$	$1 \mathrm{~d}_{52}$	0.7			0.25-0.59	0.12-0.36
5	3.35	(3/2,7/2)			0.17 ± 0.05	0.15 ± 0.1	0.016-0.06	
6	3.44	3/2 ${ }^{+}$	ld_{4}	(13)			0.21-0.48	
7	4.08	(3/2,5/2)	$1 \mathrm{~d}_{52}$	0.85			0.12-0.32	0.10-0.33
8	4.21						0.12-0.36	
10	4.53	(3/2,5/2)*	$1 \mathrm{ld}_{32}$				0.09-0.24	
12	4.72	(3/2,5/2) ${ }^{+}$	$\mathrm{Id}_{8 / 2}$	0.45			0.026-0.09	0.038-0.14
14	4.97	(1/2,3/2)		0.06			0.11-0.22	0.22
16	5.15	$1 / 2^{+}$	$2 s_{12}$	0.32			0.13	0.035

Табтнца 10.
Табттиа 10. Іродаластине

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S^{32}

Реакиия	Конечное ядро	1	$\mathrm{E}_{1}, \mathrm{M} 3 \mathrm{~B}$	J"	$\begin{gathered} \boldsymbol{\sigma}^{\text {mat }} \\ \text { MэВ, мin/cp } \end{gathered}$
$y, 0$	${ }^{27} \mathrm{Al}$	1	0.843	1/2*	$1.5 \pm 0.5 *$
		2	1.013	3/2 ${ }^{\text { }}$	6.5 $\pm 0.6{ }^{*}$
		4	2.74	5/2'	2.2-2.7
$\gamma, n p$	Si ${ }^{29}$	1	1.27	3/2'	2.28 ± 0.42
		2	2.03	5/2'	0.91 ± 0.22

Примечинии: - по данпым рибиты [18]
Tacitula 11.
 систоний конечных ял"ן

Koncy-hue sutpo	1	E_{1}, MoB	\mathbf{J}^{\star} настояния paбora			
					[65]	
$\mathrm{Si}^{\text {2b }}$	0	0	0		0.34*	
	1	1.79	2	$T \backsim 0$	0.7 ± 0.2	0.6510 .2
	2	4.62	$4{ }^{+}$		(0.16 0.0 .05	0.3*(). 1

Таблина 12.
Для ядра P^{34} данные приведены в табл.7,8 и 11. Как видно из таблии для ядра P^{31} в результате ($\gamma, \mathrm{X} \gamma^{\prime}$)-эксперимента получсна информация об интеральных сечеюня фотоядерных реакций $\mathrm{P}^{31}(\gamma, \mathrm{p}), \mathrm{P}^{31}(\gamma, n), \mathrm{P}^{31}(\gamma, \alpha)$ и $\mathrm{P}^{31}(\gamma, n \mathrm{p})$ с образованнем конечных ядер в различных состояниях. В данном типе эксперимснта сведения о зиселении оснонных состояний конечных ядер не могут быть получены. В качестве ссчения зассления основных состояний конечньх ядер Si^{30} и P^{30} использованы данные прямъх $[7,2]$ и обратных [15] фотоядерных реакций. Фотоны распада, сопровожлающие рсакıии $\left(\gamma, n_{1}\right)$ и (γ, n_{2}), располагяются в низкоэнергичной части γ-спектра для ядра P^{31} и сильно подавлены более интенсивными фоновыми γ-линиями (рис.21). Это не позволило корректно выделитъ сечение заселения первого и второго возбуждепньх состояний ядра
p^{30}. Для этих каналов фотонейтронной рсакции на ядре P^{31} в качестве сечения использованы фотонейтронной реакции на ядре P^{31} в качестве сечсния использованы данныс из анализа других работ по ($\gamma, \mathrm{X} \gamma^{\prime}$)-исследованиям, а также оценки величин полупрямых сечений. По сравнению с данными более ранних исследований ядра $\mathrm{P}^{3 \prime}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-мстодикой [18,19] (табл.I) информация об интеграљных величинах ссчений слсдующих 20 парциальных рсакций получсны впервые:

$$
\begin{aligned}
& \left(\gamma, \mathbf{P}_{514}\right),\left(\gamma, \mathbf{P}_{14}\right),\left(\gamma, \mathbf{P}_{18}\right),\left(\gamma, \mathbf{P}_{21}\right),\left(\gamma, \mathbf{P}_{22}\right),\left(\gamma, \mathrm{N}_{12}\right),\left(\gamma, \mathbf{N}_{20}\right), \\
& \left(\gamma, \mathrm{N}_{21}\right),\left(\gamma, \mathrm{N}_{21}\right),\left(\gamma, \mathrm{N}_{31}\right),\left(\gamma, \alpha_{20}\right),\left(\gamma, \mathrm{NP}_{1}\right) \boldsymbol{u}\left(\gamma, \mathrm{NP}_{2}\right) \text {. }
\end{aligned}
$$

Таким образом, для ядра P^{31} обнаружена чрезвычайно сложная картина распада ДГР, вклочаюшая свыше 30 парциальных каналов. Полученныс данные требуют тцательного ынализа.

Наиболее полные сведсния 0 парциальных фотопротонных сечсниях яцра P^{31} получены в настоящсй работе ($\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-эксперимент) и в рабооте [15] ((γ, p) эксперимент, см.табл.I). При сравнении данных этих эксперимснтон обнаруживастся различис в абсолютньх значениях иятегральных сечений заселения первого, второго возбужденных состояний, а таюжс группы состояний с Ев $\quad 5.2 \mathrm{M}$ ВВ конечного ядра Si^{30}. Так суммарное интегральное сечение заселения уровней 2.24 и 3.50 МэВ ядра Si^{30}, определенное из ($\gamma, \mathrm{X} \gamma^{\prime}$)-экспсримента, превышает соответствуюшие данные (γ, р)-эксперимента на величину -11 M в.мб/ср. Но, с друго/f стороны, нашн данные для нижних двух возбужденных состояний нс противоречат аналогичным данным, полученным такой же ($\gamma, \mathrm{X} \gamma^{\prime}$)-мстодикой, а данные работы [15] находятся в разумном соэласии с данными других (γ, p)-экспериментов [13,20]. Таким образом, обнаруживается противоречне между ($\gamma, \mathrm{X} \gamma^{\prime}$) и (γ, p)-экспсриментами. Дия разрсисния

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

этого противоречия рассмотрим основные конкурирующие процессы, которые могут давать вклад в абсольотные значенни интегральных сечений заселения иервого и второго возбужденньх состояний ядра Si^{30} при выполнении ($\gamma, \mathbf{X} \gamma^{\prime}$)-эксперимента. Такими процессами являются: ядернос резонанснос риссеяние и нсупругос расссянис фотонов на ядре-мишени P^{31} с заселением низколежящих состояний с $\mathrm{E}_{\mathrm{i}}=1.27$ и 2.23 M МВ (анаии состояния с $\mathrm{E}_{\mathrm{j}}=$ $1.27 \mathrm{M} \supset \mathrm{B}$ обусловлен тем, что в сечение реакции $\mathrm{P}^{11}\left(\gamma, \mathrm{P}_{2}\right)$ даюот вклад γ-переходы 3.50 M ВВ $\rightarrow 2.24 \mathrm{M}$ ВВ конечного ядра Si^{30}); (n,n' γ)-реакция на ядре P^{31}; а Таюже нсучтснные γ переходы с более высокорасположенных уровней ядри Si^{30}, возбуждаเощихся после протонного распада ДГР ядра Р³. Оцгеним вклад каждого из данньгх процессов. Как показано в работе [63] с помощьо полуэмпирических выражени н : $^{\text {в }}$

$$
\sigma_{y u p}{ }^{\ln 1}\left(\mathrm{M} 3 \mathrm{~B}_{,} \mathrm{M} 0\right)=k \mathrm{E}_{\text {mas }} \Delta \mathrm{E}(\mathrm{~N} Z / \mathrm{A})^{2},(7)
$$

где k - коэффициент пропорциональности (8.74•10-3); $\mathrm{E}_{\max }$-положение максимума гигантского резонанса (($\left.\mathrm{A}^{-0.2}\right)$ $\mathrm{M} 3 \mathrm{~B}) ; ~ \triangle \mathrm{E}$ - шнрина ДГР ($\sim 10 \mathrm{M} 3 \mathrm{~B}$);

$$
u \sigma_{x p}^{l n t}=\left(2 J_{2}+1\right) \pi^{2} \hbar^{2} c^{2} \Gamma_{\gamma} /\left(2 J_{1}+1\right) E_{1}^{2},(8)
$$

где E_{i} - энергия изолированного уровня ядра ($\mathrm{M} э \mathrm{~B}$); J_{1} -спин основного состояния ядра; J_{2} - спин изолированного уровня; Γ_{γ} - ширина уровня ($\left.\Gamma_{\gamma}=\hbar / \tau\right)$; можно рассчитать интегральное сечение упругого рассеяния фотонов через возбуждение ДГР $-\sigma_{\text {упр }}^{\text {im }}$ и интегральное сечение ядерного резонансного рассеяния на изолированном уровне $\sigma_{я р}^{\text {lint. }}$

В рсзультате расчслов для ядра P^{31} нами получены следующие оценки: интегральное сечение упругого рассеяния фотонов через возбуждение ДГР ~ 2.6 МэВ, мб; интсгрильное сечсние ядерного резонансного рассеяния на уровне 1.27 МэВ - 0.39 МэВ.мб, на уровне 2.23 M М 0.32 M эВ,мб. Расчет ссчсния неупругого рассеяния через

М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

возбуждение ДГР с заселением низколежащих уровней 1.27 и 2.23 M 3 B ядра P^{31} затруднён, так как для описания таких каналов нсупругого рассеяння нсобходимо грименсние моделей, корректно учитъвающих микроскопическую структуру уровней ДГР ядра P^{31}. Однако, оценку сечений неупругого риссечения можно получить, если прелположить, что соотношение упругих и неупругих каналов рассеяния черсз ДГР на ядре P^{31} примерно такос жс как и для других ядер $1 \mathrm{~d} 2 s-$ боолочки. В работе [64] приведены данные по рассеяниіо фотонов на ядре Si^{18}. Это ядро оттосится к группе ядер 1 d 2 s -оболочки и по чисту нуклонов незначитешьно отличается от ядра $\mathrm{P}^{3 \prime}$.

Для ядра Si ${ }^{28}$ [64] сечение упругого рассеяния фотонов через ДГР приблизительно в 3 раза болыше сечения неупругого рассеяния через ДГР с заселением первого и второго возбужденных уровнсй этого ядра. Прсдполагая такую же ситущцию для ядри P^{31} получаем, что интегральное сечение неупругого рассеяния фотонов через ДРР с возбуждением уровня 1.27 МэВ ~ 0.9 МэВ.мб уровня 2.23 M В $\sim 0.84 \mathrm{M}$ В $\mathbf{~ м ~} б$. Суммарное сечение ядерного резонансного и неупругого рассеяния на ядре P^{31}, которое могут давать вклад в интегралиное сечение заселения первого и второго возбужденных уровней ядра Si^{30}, составляет ~ 2.45 МэВ,мб. Разделив это чисьо на 4π, получасм ~ 0.2 МэВ,мб/ ср. Это значение не превышает даже величину погрешности определения интегральных сечений парциальных каналов в ($\gamma, \mathrm{X} \gamma^{\prime}$)-эксперименте.

Следовательно, процесс упрутого и неупрутого рассеяния фотонов на ядрь-мишени $P^{3 /}$ не может бытъ главным эффектом, обуславливающим различие в значениях ингегральньх сечений заселения первых двух возбужденных состояний ядра Si^{30}, получснных ($\gamma, \mathrm{X} \gamma^{\prime}$) и (γ, p)-методиками.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И \mathbf{S}^{32}

Оценим вклад (n, n ' γ)-реакции на ядре P^{31}. Согласно данным работы [65] в данной реакции наиболее интенсивно заселяются уровни ядра ${ }^{31}$ с $\mathrm{E}_{\mathrm{i}}=1.27$ и 2.23 M эВ, пиичем γ-линия с энергией 1.27 M 3 B в 3.3 раза превышаег по относительной интенсивности γ-линию с энергией 2.23 МэВ и имеет такую же величину как и интснсивность γ-линии 1.78 МэВ из реакции $\mathrm{Si}^{28}(n, n ' \gamma)$. В работе [65] интенсивности рассматриваемых γ-линий, нормированы относительно интенсивности γ-линии 847 кэВ ${ }^{59} \mathrm{Fe}$, тикже наблодаемой в ($n, n^{\prime} \gamma$)-процессах. Сечение реакции $\mathrm{Si}^{28}\left(\mathrm{n}, \mathrm{n}^{\prime} \gamma\right)$ с возбуждением уровня 1.78 M МВ составляст, как предполагают авторы работы [64], ~ 11 МэВ.мб. Учитывая это, получаем что за счет процесса $\mathrm{P}^{\prime \prime}(\mathrm{n}, \mathrm{n}$ ' γ) суммарное интегрально сечение заселсния уровней 2.4 и 3.50 M В ядра Si^{30}, определенное в $\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-эксперименте, можетпренышать соотвстствуюшис данных (γ,р)-эксперимента на величину
 различия. Таким образом, остастся прсдположить, что главным эффектом, приводящим к обсуждаемому различию, являются γ-переходы с более высокорасположенных уровней ядра Si^{30}. Справедливость данного предположения подтверждается тем, что при исследовании наиболее трудно анализирусмого высокоэнергичного участка экспериментального γ-стектра, полученного, в настоящей работе, обнаружено отклонение экспоненциальной фоновой линии от характерного монотонного спада в области энергий возбуждепия конечных ядер 7.3-9.5 МэВ. На рис. 28 сравниваются высокоэнергичные участки γ-спектров из $\mathrm{P}^{31}\left(\gamma, \mathbf{X} \gamma^{\prime}\right)$ и $\mathrm{s}^{3}(\gamma, \mathrm{p})$-экспериментов. Гистограмма с точками харакгернзует γ-спектри мишени из ссры. Из рисунка видно, что γ-спектр из ${ }^{3}$ ($\left(\gamma, \mathrm{X} \gamma^{\prime}\right.$)-эксперименти в данной облласти энергий возбуждения конечных ядер имеет широкий "размьтты"̆" максимум, Если исследовать отношении значений фоновых линий обоих сравниваемых γ-спектров по всей области энергий возбуждения конечных ядер и

Puc.28. Гистиipammes blicoko ревкіий $\mu^{\prime \prime}\left(y_{1}, X y\right)$ и $S^{\prime \prime}\left(y_{,} X y_{1}\right)$.
построитъ, кривую зависимости данного отношсния от E_{i}, то окажется, что в области энергий 5.6 M МВ и 7.3 - 9.5 M МВ полученная кривая будет иметь аномальный ход (вставка рис.28).

Вставка к рисунку - зависимость отношения значений фоновых линий указанных спектров от энсргии возбужцсния конечных ядсы.

Максимум кривой в области 5-6 МЈВ объясняется большим вкладом интенсивных кислородньхх пиков в $\gamma-$ спектр из фочфора. Вопрос о наличии зтих максимумов в γ-спектре из $\mathrm{P}^{31}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-эксперимента обсуждался в §2 гл.II. Максимум в ходе кривой отношения фоновых линий в области 7.3-9.5 МэВ обуславиивастся наличисм подчеркнутого выше (рис.28) широкого "размњтого" максимума в γ-спектре из ${ }^{\prime \prime \prime}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-эксперимента.

Фотоны, формирующие структуру этого максимума, обусловлены γ-переходами с высокорасположенных уровней с $\mathrm{E}_{1} \geq 9.5 \mathrm{M} 3 \mathrm{~B}$ ядрл Si^{30} на основное и нижних два возбужденных состояния. Действительно, в этой области энергий возбуждения конеиного яцра $\mathrm{Si}^{\text {?v }}$ распонанаются уровни отрицательной чстности, отвечаюıщие дыркам в

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНА.ТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

оболочке $1 p$, и имсюшие характеристики $\mathrm{J}^{\pi}=1^{\cdot} \cdot \gamma$-переходы с таких уровней на основное, первое и второе возбужденные состояния ядра Si^{30} являюотся электрически дипольными и поэтому будут происходить с большой вероятностью.

Низкая эффективность регистрации γ-квантов $\mathrm{Ce}(\mathrm{Li})-$ детектором для анализирусмого энсргеического дианазона не даёт возмоэности однозначно опре,心елеить интегрииьное сечение заселения группы высоковозбужденных J " $=1^{-}$ состояний ядра Si^{30}. В связи с этим удалось получить только оценку иютервала неопределенности (см.табл.7, столбец 6) абсолктной величины сечения заселения высокорасположенньх ($\mathrm{E}_{\mathrm{i}} \geq 9.5 \mathrm{M}$ В) уровней ядра Si^{30}. Согльсно этой оцснке величина обсуждасмого сецения 6-13 Мэß.мб/ ср. Разумность приведенной оцснки подтверж-лиется экспериментальными динными работы [15], из которой следует, что суммарное интегральное сечение заселения обсуждаемых высокорасположенных уровней ядри Si^{30} составляет 7.4 МэВ.мб/ср.
γ-переходы с высокорасположснных $\mathrm{J}^{\pi}=1^{\circ}$ состояний ядра Si^{30} на первый и второй возбужденныс уровни пока экспериментально не нибююдались. Однако, такие переходы не запрешены правилами отбора и верочтность их должна быть сравнимой с вероятностью переходов на основное состояние ядра Si^{30}. На это же указывает и то, что $\gamma-$ переходы, идущие только на основное состояние конечного ядра Si^{30}, как следуст из анализа высокоэнергичного участка эксиеримснтального γ-спектра, нс могут полностью объяснить структуру γ-спектра и области энергий $7.3-9.5$ MэВ.

Таким образом, превьшение величин интегральньх сечений заселения первого и второго возбужденных состояний ядра Si^{30}, полученных в ($\gamma, \mathrm{X} \gamma^{\prime}$)-экспернменте наю аналогичными данными из (γ,р)-экспернмента, наблюдисмое для всех ($\gamma, \mathbf{X} \gamma^{\prime}$)-опытов, обусловлено тем, что не удаётся полностью учесть вклад γ-переходов с высокорасположенных $\mathrm{J}^{x}=1^{-}$состояний ядра Si^{30}. В работах [18,19] анализ высокорасположенных γ-переходов

выполнен не был. Увеличение области регистрации γ квантов до 10 M В в настоящем эксперименте позволило прояснить ситуацию в области высокорасположенных γ переходов и выявить причины различия между данньми (γ, p) и $\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$-экспериментов.

Иными словами, суммарное превышение 8 МэВ.мб/ср (табл.7) над 0.9 МэВ.мб/ср (табл.1) для первого возоужденного уровня ядра Si^{30} н 4.7 M ВВ.мб/ср над 0.77 M МВ,мб́/ср для второго возбужденного уровня, составляющсе ~ 11 МэВ.мб/ср, по-существу представияст собой ссчснис заселсния уроннсй с $\mathrm{E}_{\mathrm{i}} \geq 9.5 \mathrm{M} 3 \mathrm{~B}$, каскалныс γ-псреходы с которьхх и обуславливают различие двух типов экспериментов. Величина этого сечения хорошо согласуется с оценкой $6-13 \mathrm{M}$ МВмб/ср, приведенной в табл. 7 .

Превышение данных ($\gamma, \mathbf{X} \gamma^{\prime}$)-эксперимента над данными (γ, p)-реакции для группы уровннй с $\mathrm{E}_{1}=5.2 \mathrm{M}$ ВВ может бьть оюъяснено отличнем максимальньх энергий γ излучений, использованных для проведения сравниваемых экспериментов (различны диапазоны интегрирования по энергии сечсний)

Для групп уровней с центром тяжести $\mathrm{E}_{\mathrm{i}}=6.9 \mathrm{M}$ МВ и E_{1} $=8.25 \mathrm{M}$ ЭВ наблюдастся солласие данных сопоставляемых методик эксиериментов.

Таким образом, велкчины парциальных интегральнътх сечений заселния возбуждснных уровней с $i \geq 3$ конечного ядра Si^{30}, полученных из ($\gamma, \mathrm{X} \gamma^{\prime}$)-эксперимента, являются достаточно надежными и могут быть использованы при дальнейшем инализе результатов. Для уровней $\mathrm{Si}^{30} \mathrm{c} \mathrm{i}<3$ будем использовать данные (γ, р)-эксперимегта.

В табл. 11 вместе с нашими данными по (γ, α)-реакции на ядре P^{31} приведены значения сечений заселения первого и второго возбужденных состояний конечного ядра ${ }^{27} \mathrm{Al}$, полученные аналогичной методике в работе [18]. В нашем эксперимснте наблюдается γ-линии, энериин которых сонищают с энерінями тпереходов с первого и второго возбужденных состояний на основное состоянис ядра ${ }^{27} \mathrm{Al}$. Эти γ-линии идентифицированы как фоновне линии из ${ }^{27} \mathrm{Al}(n, n ' \gamma)$-реакции. Поэтому. Мы считаем,

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{3 \prime}$ И S 32

что значения сечений заселения первого и второго возбужденных состояний ядра ${ }^{27} \mathrm{Al}$ нельзя объяснить только за счет (γ, α)-канала фоторасщепления ядра P^{31}. Такого же мнения придерживаются и авторы работы [19]. В табл. 11 представлены и интегральные парциальные сечения реакции (γ, np) на ядре P^{31}. Ранее этот ироцесс исследовался в работе [8], согласно которой $=50$ МэВ $м$ мб. Напомним, что в риботе [8] парциильные каналы реакции (γ, np) не исследовались. Сумма интегральных сечений заселения первого и второго возбужденных состояний ядра Si^{20} в результате ($\gamma, n \mathrm{p}$)реакций, полученных в нашем эксперименте, умноженная на 4π, составляет ~ 41 МэВ.мб.

Из данных табл. 7 и 8 следуст, что величнны полных сечений (γ, p) и (γ, n)-рсакций составляют соответственно 314 ± 40 МэВ.мб в 225 ± 35 МэВ.мб , и ниходятся в хорошем согласии с данными работ [7,10]. Величина полного сечений фотопоглощения (сумма сечений реакций (γ, p) и (γ, n)) составляет 539 ± 55 МэВ.мб. Отношение полных сечений фотопротонной и фотонсійтронной реакции составляет 1.4 ± 0.3, чго близко к аналогичным данным дыя других ядер $1 \mathrm{~d} 2 \mathrm{~s}-06$ илочки, имеющих на один пиоотон меныныс, чем ближайшее четно-четное самоспряженное ядро.

Рассмотрим результаты обработки спектра γ-квантов из реакции $\mathrm{s}^{n}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$. Для этого ядра получены сведения - I5 фотопротонных и 3 фотонейтронньх парциальных каналах фоторасчепления (см.табл. 9 и 10). Наряду с заселением отдельных уровней ядер P^{31} и $\mathrm{S}^{3 \prime}$ в рсзультате фотонуклонньх реакций наблюдалось зиселение первого и второго возбужденньх уровней ядра $\mathrm{S}^{3 \mathrm{~s}}$ с энергиями $\mathrm{E}_{\mathrm{i}}=$ 1.79 и 4.62 МэВ вследствие реакции $s^{n}\left(\gamma, \alpha_{1}\right) \mathrm{Si}^{2 \mathrm{x}}$ (см.табл.12).

В табл. 9 и 10 вместе с подученными нами результатами приведены результаты более ранних исследований $[23,39]$. Наши данные хорошо согласуются с данными работы [39], получснными аналогияной методикой и примерно в тех же экспериментальньх условиях ($\mathrm{E}_{\varphi}^{\text {mux }}=26 \mathrm{M}$ МВ, $\theta_{\varphi}=150^{\circ}$). Лишь в одном из 18 сравниваемых парциальных сечений - (γ, n_{2}) имеется различие (см.табл.10), выходящее за

пределы приведенных погрешностей. Парциальныс сечсния заселення уровней ядра P^{31} с энергиями $\mathrm{E}_{1}=6.34$ и 6.91 M МВ определены впервые.

Из сравнсныя данных работы [23] с нашими результатами следует, что для всех парциальных фотопротонньх персходов отношение сечения при $\theta_{0}=90^{\circ}$ [23] и $\theta_{y}=$ $140^{\prime \prime}$ практически одно и то же: 1.5 ± 0.1. Величина этого отношения может бытъ оо̋ъяснена анизотропией углового распределения фотопротонов, имеющего максимум при $\theta_{p}=90^{\prime \prime}$. На основе сказанного можно продолжитъ, что всличина интегрального сечения рсакции (γ, p_{0}) при $\theta_{\gamma}=140^{\circ}$ составляст 1.4 МэВ.мб/ср. В качестве оценки интегрального сечения реакции (γ, n_{0}) можно использоватъ значение 0.78 МэВ.мб/ср, полученное путем пересчета нзз сечсния (γ, p_{0})-реакции на основе изоспиновой симметрии нуклонных распадов самосопряженных четно-четных ядер 1d2sоболочки (процедура пересчета будет описана в гл. III, §4). Интегральное сечение реакции (γ, α_{v}), полученное в реботе [6б] при $0=135^{\circ}$, привсдено в одном столбие о нашими данными (см.табл.12).

Суммарные интсгральные сечения лия наблюдаемьх в настояцем эксперименте фотопротонных и фотонейтронньх переходов (с учетом переходов в основное состояние консчных ядер ${ }^{31}$ и S^{31}) равны $15,3 \pm 1.1$ и 4.6 ± 0.9 МэВ.мб/ср. Зти сечения не вклочагот значительной части фотонуклонных переходов, идущих на высоколечацие уровни конечных ядер. Так согласно данным работы [23] около половины всех фотопротонных переходов идет на уровни ядра Р" с энергиямн вьше 6 M эВ. γ-распад таких состояний сильно подавляется за счет того что они лежат выше порога эмиссии протона (энергия отделения протона в ядрах P^{31} и S^{31} равны соответетвенно 7.29 и (6.08 M 3 B), и не наблюдаются в ($\gamma, \mathrm{X} \gamma^{\prime}$)-эксперименте.

Вместе с тем, соотнощение между всроятностями Эмиссии протонов и нейтронов для наблодаемых в данном эксперименте переходов, равнос 3.3 ± 0.5, близко к полученному из анализа полньх сечений реакций (γ, p) и $(\gamma, n)-3.1 \pm 0.6[5]$.

Г.ЛАВА III

ОБОЛОЧЕЧНАЯ И ИЗОСПИНОВАЯ СТРУКТУРА ДГР ЯДЕР ${ }^{31}$ И S 32

Для интерпрститии парииильньтх фотонуклонннгх реакций необходимо привлекать информацию о характеристиках заселяемых состояний конечных ядер из реакций однонуклонного подхвата. Исследования реакций однонуклонного подхвата даот информацию о распрсделении дырочных конфигураций по состояниям конечного ядра. Эту информацию содержит в себе "спектроскопический фактор" уровня.

Рассмотрим особенности дырочных возбуждений исследуемьх в настоящей работе ядер $P^{3 \prime}$ и S^{32}. Для уточнсния спектроскопических факторов был провсден детальный анализ рядд данных по реакциям подхвата и срыва. Анализировались данные таблиц свойств ядер с $\mathrm{A}=21-44$ [61], "наилучшие" спектроскопические факторы из работы [67], а также данные международного файла оцененных данных по структуре ядри (ENSDF). Анализ такого большого числа экспериментальных работ по срыву и подхвату вызван нсобходимостъю повышения точности огрсделсния величин спектроскопических факторов.

Погрешность определения последних для большинства анализируемых работ составляет около 20%.

В качестве критериев отбора спектроскопических факторов использовались правила сумм [67,68], связывающие спектроскопические факторы реакиий псредачи нуклона с заселснностями отдельных подоболочек ядра-мишсни.

В табл.7-10 приведены выбранные значения спектроскопических факторов подхвата нуклона. Эти же данные для наглядности изображены на рис.29. Для удобства сопоставления величин спекроскопических факторов нзоюар-аналоговых состояний конечных ядер, в табл. 7 и 8 приведены значсния S, а в табл. 9 и 10 значсния $C^{2} S$. Аналогичным образом представлсны данные и на рис. 29.

Pис.29. Сиектроскопическно характернстики нук:七иных

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S^{32}

Характер дырочных возбуждений ядер p^{31} и S^{122} во многом близок:

дырочныс уровни $/ \mathrm{d} 2$ ぃ-оболочке расположены главным образом в области энергий возбуждения 0-9 МэВ и исчерпывают основную часть правила сумм для этой обольчки;

из-за ограничения по энергии в реакциях подхвата не видна основная часть спектроскопической силы дырочного возбуждения в подоболочाке $/ p_{1 / 2}$ и практически вся спектроскопическая сила дырочного возбуждения в подобоночке $1 p_{3 / 2}$;

среди дырочных состояний в $/ d 2 \pi=$ болочке наиюолее сильно разбросанным является состояние $1 d_{32}{ }^{-1}$.

Вместе с общими закономерностями спсктроскопические характеристики дырочных возбуждений ядер $P^{3 \prime}$ и S^{42} нмеот н ряд различий, которые, как мы увидим это в дильнейшем, во многом определятот риспидные характеристики гигантского диполыного резонанса исследусмых ядер. Целесообразно аншнзировать сиекгроскопические характеристики дырочных возбуждений ядер P^{31} и S^{32} сопоставляя их между собой.

Из совокупности спектроскопической информыџии для протонных и нейтронных заселенностей $v_{j}(p)$ и $v_{j}(n)$ подоболочек $1 d_{5 / 2}, 2 s_{1 / 2}$ и $1 d_{3 / 2}$ ядер $P^{\prime \prime}$ и S^{32} (заселенность подоболочки, например протонной, определяется как $\left.v_{j}(p) \equiv<p\right\rangle_{j} /(2 j+1)$, где $\langle p\rangle$, число протонов на подоболочке), а такжс для полных чисел $\langle N\rangle_{j}=\langle p\rangle_{j},\langle n\rangle_{j}$ нуклонов на этих подоболочках получены следуощие значения:

для ядра P^{\prime}

$$
\begin{aligned}
& \mathrm{v} \mathrm{~d}_{3 / 2}(p)=1.04 \\
& v d_{s / 2}(n)=0.98 \\
& <N>d_{3 / 2} 12.13 \\
& v s_{1 / 2}(p)=0.34 \\
& v \mathrm{~d}_{32}(p)=0 \\
& v \mathrm{~s}_{1 / 2}(n)=0.67 \\
& <N>s_{1 / 2-} 2.02 \\
& v \mathrm{~d}_{3 / 2}(n)=0.40 \\
& <N>d_{32} 1.60
\end{aligned}
$$

лля ялра S^{92}

$$
\begin{aligned}
& v d_{5 / 2}(p)=0.82 \quad \cup d_{3 / 2}(n)=0.98 \quad<N>d_{3 / 2} 10.80 \\
& v s_{12}(p)=0.67 \quad \text { v s } 1 / 2(n)=0.82 \quad<N>s_{1 / 2-2} 2.98 \\
& v_{3 / 2}(p)=0.19 \quad \text { v d } d_{3 / 2}(n)=0.20 \quad<N>d_{3 / 2} 1.56
\end{aligned}
$$

Из этих данньг видно, что обшсе число нуклонов, расположенньх в $/ d 2 s$-оболочке у исследуемьх ядер с точностью до $4-5 \%$ совпадает с правилом сумм для этой оболочки (у $p^{\prime \prime}$ оно несколько выше, а у S^{32} - нескалько нижс правила сумм). Таким образом, с помощью приведенных данных с заселенности внешних подоболочек ядер $p^{\prime \prime}$ и S^{32}, можно цовольно точно определить структуру внсшних подоболочек рассматриваемых ядер в основном состоянии.

Для анали'за структуры основных состояний ядер $P^{\prime \prime}$ и S^{32} можно также привлсчь результаты расцстов в рамках многочастичной модели оболочек [69]. Для ядра p^{31} модель оболочек в целом довольно точно воспроизводит реальную снтуацию. Основнос состоянис этоло ядра можно рассматривать как совокупностъ инертного кора O^{16} (8 протонов и 8 нейтронов, полностыо заполняяощих оболочки $1 s$ и $I p$) и 15 нуклонов во внсшнсіी $/ d 2 s$-оболочке. Действительно, все нуклоны внешней обилочки главным образом располагаются в подоболочке $l d_{32}$, а вакансии распределены между подоболочками $2 s_{1 / 2} \mathrm{H} / d_{32}$.

Основноы состояние ядра S^{32} не отвечает максимальному заполнению нижных подоболочек $\left(1 d_{9,2}\right.$ и $\left.2 s_{12}\right)$. Повидимому, для ядра S^{32} можно говорить о максимальном заполнснии лишь $1 s$ и $1 p$-оболочке, т.с. инертный кор O^{16} сушествует и для ядра S^{32}.

Заселенность подоболочки $I d_{5 / 2}$ ядра S^{32} меньше заселенности แналогичной подоболочки ядри $P^{3 \prime}$. Особ́снно отчетливо это проявляется при анализе данннх по подхвату протона. Практически все протоны внешней оболочки нечетно-чстного ядра $P^{3 /}$ сосредоточены на наинижайщих

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И \mathbf{S}^{32}

возможных подоболочках $I d_{s / 2}$ и $2 s_{1 / 2}$. Это говорит о том, что в нечетно-четном ядре $p^{\prime l}$ граница Ферми менее размьта, чем в соседнем четно-четном ядре S^{32}, которое имеег на олин протон большс. Мснъшес размытие границы ()ерми в ядре $P^{\prime \prime}$ по сравнению с ядром S^{32} можно рассматривать как проявление эффектп спаривания, которое в нечетных ядрах всегда слабсе, чсм в соседних четных ядрах. Такая закономерностъ соотношения заселснностей подоболочек является общей и для других соседиих четио-четוых и нечетных ядер $/ d 2$ s-оболочки [70].

Из динных табл.7-10 и рис. 29 следует, что в ядре S^{32} основная часть спектроскопической силы дырки в каждой из подоболочек $l d_{5 / 2}, 2 s_{1 / 2}$ и $l d_{3 / 2}$ концентрируется на самых нижннх состояниях коненных ядер, дыя которых знчения спина и четности допускаюот примесь данного дырочпого возбуждения. Спектроскопическая сила дырок внешнсй оболочки ядра $p^{\prime \prime}$ оказывастся более сильно ризбросинной по состояниям конечных ядер, а центры их тяжести смещёнными к большим энергням возбуждения. Особенно отчстливо проявлястся это для подоболочки $1 d_{3 / 2}$. Для того чтобы убедиться в этом достаточно проанализировать данные реакций подхвата протона.

В яире S^{32} спсктроскопическая сила протонной дырки в подоболочке $1 d_{9 / 2}$ главньм образом сосредоточена в одном состоянии конечного ядра $P^{\prime \prime}$ - состоянии с энерией 2.23 M МВ. На это состояние приходится 43% спектроскопической силы, а ее остальная чисть разбросани по девяти уровням. В исходном ядре $P^{\prime \prime}$ ситуация несколько иная. Число состояний конечного ядри $S i^{30}$, по которым разбрасывиется спектроскопическая сили протонной дырки в подоболочке $I d_{s / 2}$, достигает 14 . Причём основная частъ этой силы распрсделястяя уже между двумя состояниями 2.24 и 5.23 МэВ. Спектроскопические фикторы этих уровней исчерпывают соответственно 28 и 19\% правила сумм для

анализирусмой подоболочки. Таким образом, нечетночетное ядро $P^{\prime \prime}$ имеет более сложгую генеалогическую структуру основного состояния по сравнению с четночетным ядром S^{32}. Аналогичняя закономерность выявляется и при сравнении других соседних четно-четных и нечетных ядер $/ d 2$-оболочки [70].

Различия спектроскопических характеристик дырочных возбуждений чстно-чстного ядра S^{32} и нечстно-чстного ядра $P^{\prime \prime}$, а также эффекты взаимовлияния нейтронов и протонов проявляотся и в одночастичных энергиях ядсрного гамильтониана. Значения последних зависят ог заселенностей внешних подоболочек в основном состоянии исходного ядра, а также от энергий отделения протона в исходном ядре и в ядре, имеющем на один протон больит.

Согласно данным работы [70] для положения $l d_{s 2}$, $2 s_{1 / 2}$ и $l d_{3 / 2}$ - уровнсй одночастичного гамильтониана ядра $P^{3 /}$ имеем следующие значения: $13.3 \pm 0.4 ; 7.5 \pm 0.2$ и 4.2 ± 0.3 МэВ соответственно. Аналогичные данные для ядра S^{32} составляют $12.6 \pm 0.3 ; 8.2 \pm 0.6$ и $3.7 \pm 0.3 \mathrm{M} 3$ В. Как видно из этих данных а ядре $P^{3 l}$ расстояние между уровнями $l d_{32}$ и $2 s_{/ 2}$ заметно больше, чем в ядре S^{32} и составляет 5.8 МэВ (против $4.4 \mathrm{MэВ)}$. гамильтониаиа можно определить и величину спинорбитального расщешлсния $/ d$-уровня ядер $P^{3 \prime}$ и S^{33}. Эта величина для обоих ядер имеет одно и то же значение и составляет примерно ~ 9 МэВ.

Поуровням, представлснкым в табл.7-10, разбрасывается спектроскопическая сила дырок в подоболочках $I d_{5 / 2}, 2 s_{1 / 2}$ и $1 d_{32}$ ядер $p^{\prime \prime}$ и S^{32}. Уровни по которым разбрасываются дырочные возбуждения в более глубокой $1 p$-бболочке, лежат при больших энергиях возбуждения конечных ядер. Исследованная в экспериментах по подхвату и срыву нуклона область энергий возбуждения конечного ядра

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И \mathbf{S}^{12}

ограничсна. Это приводит к тому, что не все состояния конечных ядер, которые содержат иримесь дырки в $I P$-оболочке, наблюдастся в реакциях однонуклонной передачи. Для получения сведений о подоболочках $/ \Gamma_{1 / 2}$ и $1 P_{32}$ необходимо совместно с данными из реакций по, хвата использовать и данныс реакции квазиупругого выбивания протонов ($P, 2 P$) или (е, e P). В работе [70], используя динные из обоих гипов экспериментов, произнедена систематика энергии связи протонов в подоболочках $/ P_{1 / 2}$ и $/ P_{3,2}$ ряда ядер Id2s-обольчки. Привлекия эти сведения, мы можісм ощенить положение центров тяжести дырочных возбуждений в подоболочках $I P_{1 / 2}$ и $/ P_{1 / 2}$ ядер $P^{\prime \prime}$ и $S^{\ 2}$. Центры тяжести дырок в подоболочке - $I \mathscr{P}_{1 / 2}$ ядра $P^{3 /}$ приходится на энсргию примерно $\sim 10 \mathrm{M} э \mathrm{~B}$, а в ядре S^{32} на энергию примерно ~ 8 МэВ. Центры тяжести дырок в подоболочке $1 P_{3 / 2}$ ядер $P^{\prime \prime}$ и S^{32} цриходятся ны область примерно $\sim 20 \mathrm{M}$ В . Нсобходимо отметить также, что согласно данным репкций квазиупругого выбивания дырочное возбуждение в подоболочке $1 P_{3 / 2}$ ядер $P^{\prime \prime}$ и S^{32}, также как и для другнх ндер $I d 2 s$-оболочки, оказывается сильно разбросанными по энергии. Ширина разброса для ядер $1 d 2 s$-оболочки может достигать 20-30 MэB.

Данныс табл.7-10 позволяют получитъ цеыый ряд важных сведений о ДГР ядер $P^{\prime \prime}$ и S^{32}, и прежде всего о вероятности дипольных переходов для нуклонов разичных оболочск. Извсстно, что ДГР ядер $P^{3 \prime}$ и $S^{\prime \prime 3}$ формируется из нуклонныхх переходов двух типов: $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow I f 2 p$ и $/ p \rightarrow I d 2 s$. Полупрямой распад образующихся частично-дырочных состояний приводит к консчным дырочным возбуждениям соответственно в $/ d 2 s$ и $1 p$-оболочках, имеюшим противоположную четность (положительную для дырок в $1 d 2 \mathrm{~s}$-иболочкс и отрицательную для дырок в $1 p-0 б о л о ч к е)$.

Состояния положительной четности с дыркой в $/ d 2 s-$ оболочкс интснсивно возбуждаются в реакцнях подхвата нуклона. Кроме того, как было отмечено в предыдущем параграфе, ниэколежашие уровни положительной четности ядер $S i^{3 / 1}, p^{30}$ и $P^{3 /}, S^{3 /}$ в том числе и не проявляюпииеся в реакциях подхвата, могут быть успешно описаны конфигурациями с инертным кором $O^{\prime 6}$, т.с. этим состояниям отвечают возбуждения, незатрагиваюшие внутренних $/ s$ - и $1 p$-оболочек.

Таким обрязом, в качесчве оценки сечения динольных переходов для нуклонов внецней $l d 2 s$ - оболочки ядер $P^{\prime \prime}$ и S^{32} можно в’зять сумму парциальных сечений заселения приведсннъіх в табл.7-10 состояний положительной четности соответствуюощих конечньгх ядер. Вероятность переходов $/ d 2 s \rightarrow 1 f 2 p$ опреденяется отношением указанных сумм к соответствующим полाным интегральным сечениям фотопоглощения ядер $P^{\prime \prime}$ и $S^{\prime \prime}$.

Рассмотрим экспериментальные реэультаты дия ядра $P^{3 \prime}$ (тибл. 7 и 8). Как видно, в результате ($\gamma, X \gamma^{\prime}$)реакции заселяотся в подавляющем болыиинстве уровни положительной четности конечных ядер $S i^{30}$ и P^{30}. Только

состояния с $\mathrm{E}_{\mathrm{i}}=5.49$ и 8.9 M ВВ, а также группа уровней с E_{i} $\geq 9.5 \mathrm{M} 9 \mathrm{~B}$ конечного ядра Si ${ }^{30}$ (см.табл.7) характеризуюотся отрицательной четностью. Это означает, что в ($\gamma, \mathrm{X} \gamma$ ')экспериментена ядре ${ }^{\text {³ }}$ мы наблодаем в основном раснад той части дипольных состояний, которые формируются за счет нуклонных переходов $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow \mathrm{If} 2 \mathrm{p}$. Дипольные переходы нуклонов из внутренней $1 p$-оболочки ядра P^{31} дают вклад в сечения заселения состояний с $E_{i}=8.9$ и $\mathrm{E}_{\mathrm{i}} \geq$ 9.5 M 3 B ядра Si^{30} и состояний ядра $\mathrm{P}^{3 \prime \prime}$, расположенных выше 6 МэВ. γ-распад последних сильно подавляется за счет того, что эти состояния лежат выше порога эмиссии протона (энергия отделения протона в ядре P^{30} равна 5.59 M МВ). Такой распад не наблюдастся в ($\gamma, \mathrm{X} \gamma^{\prime}$)эксперименте.

Сумма интегралыных парциальных сечений заселения состояний конечных ядер Si^{311} и P^{30}, обусловленных нуклонными переходами $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow 1 \mathrm{f} 2 \mathrm{p}$, составляет 31.9 МэВ.мб/ср. Соответствующая величина, умноженння на 4π, равна 400 M ВВ.мб. Напомним, что при расчетах для $\left(\gamma, p_{0}\right),\left(\gamma, p_{1}\right)$ и ($\left.\gamma, \mathrm{p}_{2}\right)$-сечений были использованы данные работы [15], аоценкамисечений $\left(\gamma, n_{0}\right),\left(\gamma, n_{1}\right)$ и $\left(\gamma, n_{2}\right)$-каналов служили их полупрямые компоненты, приведенные в 7 столбие тибл.8. Болыную часть (примерно 51%) сечения дипольных переходов $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow 1 \mathrm{f} 2 \mathrm{p}$ составляют переходы $1 d_{5 n} \rightarrow 1 \mathrm{t} 2 \mathrm{p}$. Это объясняется тем, что именно подоболочка $1 \mathrm{~d}_{5 / 2}$ ядра P^{31} заселена наибольшим числом нуклонов (см. предыцущий парараф). По данным ($\gamma, \mathbf{X} \gamma^{\prime}$)-эксперимента интсгральное сечсние фотопоглощения ядра P^{31} составляет $540 \pm 50 \mathrm{M}$ эВ.мб. С учетом этой величины получаем, что вероятность электрических дипольных переходон нуклонов из внешней 1 d 2 s -оболочки ядра P^{31}, составляют $400 /(540 \pm 50) \sim 0.74 \pm 0.08$. Эта величина

хорошо согласуется с оценкой $0.7-1.0$ из работы [1]. Останошуося вероятность ($\sim 0.2-0.3$) следует притисать переходы $\mathrm{l} p \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$. Распад этой ветви ДГР приводит к заселению уровней ядра $\mathrm{Si}^{30} \mathrm{c} \mathrm{E}_{\mathrm{i}}=8.9$ и групाы уровнсй с E_{i} $\geq 9.5 \mathrm{M} \mathrm{B}$, имеюших отрицательную четностъ.

Рассмотрим экспериментальные результаты для ядра $S^{\prime 2}$ (табл. 9 и 10). Для этого ядра также в основном наблюдается распад тех дипольньх состояний, которые формируготея нуклонными переходами $l d 2 s \rightarrow 1 f 2 p$. Согласно данным нашего эксперимента нижняя оценка сечения таких переходов составляет примерно ~ 240 МэВ пмб. Напомним, что всличниы сечений (γ, p_{ϑ}) и (γ, n_{0})-реакций оценивались по их полупрямым компонентам (см. 9 столбцы табл. 9 и 10). Полуиенная оценка сечения переходов $1 d 2 \mathrm{~s} \rightarrow 1 / 2 p$ исчертқввист примерно - 50% величины сечения, вытекающей из классического динольноюо привили сумм дия ядра S^{32} ($480 \mathrm{MэВ}$ ммб). Выше ($\$ 4$, гл.II) отмечалось, что для ядра S^{32} не наблюдаетея значительной части нуклонных переходов, идущих на высоколежащие уровни конечных ядер. Это хорошо видно при сравнении с данными работы [23]. Поэтому полученная выше оценка вероятыости дипольных переходов нуклонов из внешней $I d 2 s-0$ олочки ядра S^{32} является нижней оценкой. Более строго вероятностъ таких переходов можно оценить только после учета велисин парциальных фотонейтронных сечений, восстановленньх путём пересчета из (γ, p)-канала (см. $\S 4$, гл.III)

Анализ распределения вероятности переходов в $152 p$ оболочку ядри S^{32} по переходам из подоболочек $I d_{s / 2}, 2 s_{12}$ и $1 d_{3 / 2}$ даёт следующую ситуацию: переходы $1 d_{s / 2} \rightarrow 1 / 2 p$ исчерпывает $33 \%, 2 s_{1 / 2} \rightarrow \mid / 2 p-22 \%$ и $/ d_{32} \rightarrow I / 2 p-45 \%$ полного сечения дипольных переходов из $/ d 2 s-0$ болочки. Это позволяет заключить, что в случае ядра S^{32} имеет место эффект сильного смешивиния конфигурация в пределих

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ

 ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{\text {¹ }}$ И S^{12}группы переходов $1 d 2 s \rightarrow!f 2 p$. В результате возбуждение этой встви происходит преимущественно за счет переходов $l d_{3 / 2} \rightarrow 1 f 2 p$, в распад - за счет энергетически болес открытых каналов, содержащих конфигурации с менсе глубокими дырками - $\left(1 d_{3,2}\right)^{-1}$ и $\left(2 s_{1 / 2}\right)^{-1}$.

В нашем экспериментс наблюдается заселение состояний отрицательной четности конечного ядра $P^{3 \prime}$ с $E_{1}=5.99$ и 6.91 МэВ (см.табл.9). Эти уровни заселяюттяя за счет переходов $l p \rightarrow I d 2$ s. Вероятность таких переходов по нашим расчстам составила лишљ 0.02 . Естественно это нижняя оценка. Для наиболес достоверной оценки вероятности переходов нуклонон из внутренней $/ p$-оболочки дошжны учитывнться все переходы $l p \rightarrow l d 2 s$, в частности, иереходы $l p_{32} \rightarrow I d 2 s$. Последние в соответствии с систематикой энергий связи нуклонов $/ p$-оболочки ядра $S^{32}[70]$ даютт вклад в сечения заселения состояний конечных ядер $P^{\prime \prime}$ и $S^{3 /}$, расположенных выше 7 M эВ. Эмиссия протонов в области энергий тиких уровней сильно подавляет γ-распад. Энергия отеделния протона в ядрах $P^{3 /}$ и $S^{\prime \prime}$ равны соответственно 7.29 и 6.08 MэB.

Ядро S^{32} - самосопряженное ядро, имеющее одинаковое число протонов и нейтронов, и, также как и другие четночетныс самосопряженные ядра 1 d 2 s -оболочкя, являстся удобным объектом изучсния степени сохрансния изоспина в состояниях с высокой энергией возбуждения, лежащих в непрерывном спектре. Напомним, что поглощение дипольньгх фотонов самосопряженньтми ядрами приводтт к возбуждению состояний ДГР с изоспкном $\mathrm{T}=1$. При последующем распаде ДГР таких ядер по протонному и нейтронному каналам происходит заселснис уронней зеркальных ядер. В отсутствие смешивания состояний ДТР по изоспину различие в парциальных нуклонных сечениях засслсння симмстричных уровнсй консчннах зеркалных ядер будет полностыо определяться ризличием в протонном и нейтроном порогах. Следовательно, при равенстве порогов и пренебрсжении кулоновскими силами отношсние сечений реакций ($\gamma, \mathrm{p}_{\mathrm{i}}$) и ($\gamma, \mathrm{n}_{\mathrm{i}}$) должно бьтъ равно единице.

За счет кулоновского взаимодействия состояния с $\mathrm{T}=1$ будут смешиваться со значительно болсе плотным фоном состояний с $T=0$. Поэтому волновая функция состояния ДГР самосопряженного ядра приобретает вид:

$$
\begin{gathered}
\varphi=\alpha_{0} \psi(\mathrm{~T}=0)+\alpha_{1} \psi(\mathrm{~T}=1),(9) \\
\text { где } \alpha_{0}{ }^{2}+\alpha_{1}{ }^{2}=1 .
\end{gathered}
$$

В работах [1,71] показано, что в этом случае отнопенис сечений реакций (γ, p_{i}) и (γ, n_{1}) будет определятъся формулой:

$$
\sigma\left(\gamma p_{i}\right) / \sigma\left(\gamma, n_{i}\right)=\sqrt{ }\left(\varepsilon_{p} / \varepsilon_{n}\right) \cdot\left(P_{p} / P_{n}\right) \cdot\left|\left(\alpha_{1}+\alpha_{d}\right) /\left(\alpha_{1}-\alpha_{0}\right)\right|^{2},(10)
$$

где $\varepsilon_{p}, \varepsilon_{n}$ и p_{p}, p_{n} - кинстические энергии проницаемости для протонов и нейтронов. Этоотношение позволяет оценитъ примесь состояний с $\mathrm{T}=0$ к состояниям с $\mathrm{T}=1$, определяемую величиной $\left|\alpha_{n} / \alpha_{1}\right|^{\prime}$.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНА.ТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И \mathbf{S}^{12}

Данныс табл. 9 и 10 позволяют получитъ величину $\left|\alpha_{0}\right|$ $\alpha,\left.\right|^{2}$ для ядра S^{32} из соотношения сечений заселения уровней с $i=1,2$ и 5 ядер $P^{\prime \prime}$ и $S^{\prime \prime}$. Оценка относится к области ДГР ($E_{\gamma} \sim 20 \mathrm{MэВ}$). Предполагалось, что отношение сечсний $\left(\gamma, p_{i}\right)$ и (γ, n_{i}) при $E_{\gamma} \sim 20 \mathrm{M}$ В совпадает с отношением интегральньх сечений этих реакций. Расчет проводился для нуклонов с минимально возможным орбитальным моментом l, поскольку проницаемость для таких нуклонов наибольцая. Так полагалось, что в парциальные сечения заселсния первого и второго возбужденных уроннсй щлср $P^{3 /}$ и $S^{\prime \prime}(i=1$ и 2) основной вклад даёт вылет нуклонов с $l=1$. Действительно, эти парциалыные сечения формируются за счет эмиссии нуклонов из $l / 2 p$-оболочки, причём вилет нуклонов с $l=3$ сильно подавлен. Для нуклонов, заселяюцих уровни ядер $P^{3 /}$ и S^{31} с $i=5$ минимальное значение 1 равно 2.
 липилнниго резонанси пдри $\Omega^{\prime \prime}$.

museric заселяямито состовнию ядер $\mathrm{P}^{\mathbf{N}} \boldsymbol{H} \mathrm{S}^{\mathrm{N}}$	орбпталиьый момент I нуклони	$\begin{gathered} \mathbf{E}_{\boldsymbol{y}}, \\ \mathbf{M}_{3} \end{gathered}$	$\sigma\left(\gamma, p_{1}\right) / \sigma\left(\gamma, n_{1}\right)$	$\left\|u_{0} / u_{1}\right\|^{2}$
0	1	$\begin{aligned} & 19.8 \\ & 21.8 \end{aligned}$	$\begin{aligned} & 0.57 \pm 0.1 \\ & 0.50 \pm 0.1 \end{aligned}$	$\begin{aligned} & 2.9 \pm 1.4^{*} \\ & 3.6 \pm 1.9^{*} \end{aligned}$
1	1	20.0	2.2 ± 0.9	3.2ヵ1.9
2	1	20.0	1.2 ± 0.4	0.2 ± 0.7
5	2	20.0	1.5 ± 0.5	8.44.9.2

Примечавне: * - данньл работы [5]
โаблица 13.
Для ядра S^{32} величина $\left|\alpha_{0} / \alpha_{j}\right|^{2}$ ранее определялась и в работе [5] по сечениям рсация (γ, p_{0}) $[29,30]$ и (γ, n_{0}) [31,32]. Величины $\left|\alpha_{0} / \alpha_{1}\right|^{2}$, полученные в настоящей работе и в работе [5] приведены в табл. 13.

Из этой таблицы мледует, что для ядра S^{32} примесь состоянии с $\mathrm{T}=0$ к состоянию с $\mathrm{T}=1$, определяемая величиной $\left|\alpha_{n}\right| \alpha_{1} \mid:$, невелика. В области максимума гигангского

дипольного розонанса она составляет нсболее нескольких процентов. Наиболеесилыно смешивает $\mathrm{T}=0$ и $\mathrm{T}=1$ состояний проявлястся в реакциях (y, p_{s}) и ($\left(, n_{s}\right.$). Это можно объяснить следуюшим образом. Парциальные сечения заселения основного и нижних двух возбужденных состояний ядер $p^{\prime \prime}$ и S^{3} формируется за счст быстропротекаюпнего полупрямого распада ДГР. (Особенности полупрямой и более поздних стадий расппца состояний ДГР ядра S^{32} подройнсе будут рассмотрены в гл.IV). Хариктерное время жизни ядра относительно такого распада $10^{-22}-10^{-23}$ с меньше времени дсйствия кулоновских сил ($10^{-15}-10^{20} \mathrm{c}$), неоо́ходимого дия сильного смешивания по изостину [72]. Поэтому величина смешивания, наблюдаемая в ($\psi, p_{d, \prime}$) и ($\left(, n_{d,}\right.$,) -реакииях миннмальна. Заселение пятого возбужленного уровня ядер $P^{\prime \prime}$ и $S^{\prime \prime}$ происходит за счет испускания нуклонов иа более поздних стадиях распида состояний ДГР - на стаии установления теплового равновесия или даже иа стилии составного ядра. Об этом, в частности, Роворит то, что эти уровни не проявляюотся в прямых реакииях подхвата. Поэтому время протекания реикций ($(, y, p)$ и (γ, n, n) значительно
 формируюшиие сечения рсакций (γ, p_{3}) и $\left(\gamma, n_{3}\right)$, испускаются на более поздних сталиях эволоции возбужденного ядрв S^{32} из долгоживущих состояний гигантского рсзонанса, существенно увеличивеет вероятность смешивания по изоспину.

О степени чистоты по изостину состояний гитантского резонанса ядра S^{2} можно судитв также и по величине сечения ($\%, \alpha$)-реакции, приводящей к заселению уровнеі̆ с $\mathrm{T}=0$ в конечном ядре. У самосопряженного ядра такой процесс может идти лишь зи счет примеси $\mathrm{T}=0$ состояний к $\mathrm{T}=1$ состояниям. В соответствии с данными табл. 12 , содержащей сведения об интегральных сечениях реакเии

ИССЈЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И \mathbf{S}^{32}

$S^{32}(\gamma, \alpha) S i^{2 *}$, на долю этой реакции, приводящей к заселснию $\mathrm{T}=0$ уровней конечного ядра Si^{28}, приходится около 3% сечсния фоторасщепления, что подтвсрждает сделанный вывод О довольно высокой чистоте по изоспину состояний ДГР ядра S^{32}.

О сравнительно высокой чистоте по нзоспину состояний ДГР ядра S^{32} можно судить также по результатам процедуры пересчета экспериментільных фотопротонных сечений в фотонсйтроннне. Пересчет осуиествляется на основс изоспиновой симметрии пуклонных каналов распад ДГР, свойствснной как ядру S^{32}, так и другим самосопряжснным ядрам $/ d 2 s$-оболочки. Суть процедуры пересчета сосгоит в следующем. Каждое $\sigma(\gamma, p$) пересчитывается с учстом сведсний об орбитальном моменте вылстаюоцих нуклонов в соответствуюшие $\sigma\left(\gamma_{i} n_{i}\right)$ в предположении отсутетвия смешивания по изоспину. Далее, полученные такнм образом $\sigma\left(\gamma, n_{i}\right)$ суммируются и сравниваготся с измеренными полными сечениями реакции (γ, n). Хорошее совпдение как по форме, так и по абсолютной велннине сравнивасмых сечений возможно лишь при незначительной примеси состояниі с $\mathrm{T}=0$ к состояниям с $\mathrm{T}=1$. Этот вывод согласуется с ранес полученными результатами для самоспряженньхх ядер $/ d 2 s=$ оболочки $[1,5]$.

Подобный пересчст для ряда другнх самосопряжснных ядер $\mathrm{C}^{\prime 2}, \mathrm{O}^{\prime 6}, \mathrm{Mg}^{2+}, \mathrm{Si}^{24}$ и $\mathrm{Ca}^{4 n}$ выполнен авторами работ [5,73-75]. Получено хорошее согласие пересчитанньх полных фотонейтронных сечений с экспериментальными. Это подтверждает высокую степень чистоты по изсопину состояний ДГР самосопряженньх ядер. Примесь состояний с $T=0$ к состояниям с $T=1$ в этих ядрах не превышаст 4% в области максимума дипольного гигантского резонанса. Результачы описывасмой процедуры псресчета для ядра S^{32} приведсны в следующем параграфе.

Выше было отмечено, что при отсутствии смешивания состояний ДІّР по изоспину распац $\mathrm{T}=1$ состояний яцра S^{32} с испуусканием протонов и нейтронов должен быть симметричен. То есть, различие в парциальных неуклонных ссчениях зассления симметричныг уроннсй конечньт зеркальных ядер $P^{3 / 1}$ и $S^{\prime 2}$ характеристики этих уровней приведены в табл.14), будет определяться влияннем кулоновского барьера при испускании протонов и разичнем в протонном и нейтронном порогах. Данный вывод аналитически можно представить слсдующим выраженисм:

$$
\sigma\left(\gamma p_{p}\right) / \sigma\left(\gamma, n_{p}\right)=\sqrt{ }\left(\varepsilon_{p} / \varepsilon_{1}\right) \cdot\left(P_{p}(l) / P_{n}(l)\right)
$$

После небольших преобразований этого выражения можно осуществитн, пересчет $\sigma\left(\gamma, p_{i}\right) \rightarrow \sigma\left(\gamma, n_{i}\right)$. Он провецен с помоцью программы «PARSEC» на ЭВМ EC-1022 (см. §2, гл.ІІ). При этом использовались нзмеренные ранее в (γ, p_{i})-эксперименте [23] энергетическне зависимости парциальных фотопротонньх сечений ядра S^{112} и ииформация об интсьральных величинах парциальных сечений (\%, $\boldsymbol{p}_{i} \gamma$)реакий, полученных в настоящей работе. Парциальные каналы, исследованные в работе [23] приведены в табл. 14. Для париинтьньх канялов, характсризуюпихсечсния заселения групп неразришенньх в (э, р) -эксперименте состояний конечного ядра, в табл. 14 указаны их цснтры тяжести.

Величины сечений для групп неразрешеиных состояний ядра $P^{3 \prime}$ с цснтрами тяжссти $E_{i}=3.3 \mathrm{M} 3 \mathrm{~B}$ (iш3-6) и 4.8 M 3 B ($i=7-19$) риспределены можху отдельными уровнями в соответствии с данными ($\gamma, p_{i} \gamma$) -эксперимента. При этом предполагалось, что форма сечений заселения отдельных уровней та же, что и форма подвергависгося делению

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S^{32}

сечения заселения группы уровнсй. Для групп уровней, расположенньх выше групп с $E_{1,} 4.8 \mathrm{M}$ ВВ, разделение парциальных сечениіи нс производилось из-за недостатка экспериментальных данных. Энергетические зависимости парциальньх фотопротонньх сечений, из которых восстанавливались парциальные фотонейтронные сечения, изображсны на рис. 30 снстлыми точками.

	γ, p_{1}	γ, n_{1}	$\begin{gathered} \mathbf{E}_{1}, \\ \mathrm{M}_{3} \mathrm{~B} \end{gathered}$		J^{2}	nld	${ }^{\text {C's }}{ }_{\text {P }}$	Cs:		
			$\mathrm{P}^{\prime \prime}$	S^{32}					1 man	$\mathrm{I}_{\text {max }}$
$\left(\gamma_{1} p_{0}\right)$	$\gamma_{\text {, }} \mathrm{p}_{\text {c }}$	$\gamma_{\text {, }}^{1}$.	0	0	1/2	28	1.0	0.95		
$\left(\gamma_{1}, p_{1}\right)$	$\gamma_{1} \mathrm{p}_{1}$	γ, n_{1}	1.27	1.25	$3{ }^{2} 2^{\prime}$	$1 \mathrm{l}_{21}$	0.75	0.8	1	3
$\left(\mathrm{y}, \mathrm{p}_{\text {, }}\right)$	$r{ }_{\text {, }} \mathrm{p}_{2}$	γ, n_{1}	2.23	2.24	5/2 ${ }^{\circ}$	$1 \mathrm{~d}_{2,}$	2.1	2.2	1	3
(y, $\mathrm{p}_{\text {, }}$,	$\begin{aligned} & \gamma \cdot p_{1} \\ & \gamma_{1} p_{1} \\ & y_{1} p_{1} \\ & y_{0} p_{0} \end{aligned}$	$\begin{aligned} & \gamma n_{1} \\ & \mu_{1} \\ & \gamma, n_{0} \\ & \gamma \mu i_{1} \end{aligned}$	$\begin{aligned} & 3.13 \\ & 3.30 \\ & 3.41 \\ & 3.51 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.08 \\ 3.29 \\ 3.35 \\ 3.44 \\ \hline \end{array}$	$\begin{aligned} & 1 / 2^{\circ} \\ & 5 / 2^{\circ} \\ & 7 / 2^{\circ} \\ & 3 / 2^{\circ} \end{aligned}$	$\begin{aligned} & 2 s_{13} \\ & 1 d_{12} \\ & 1 \mathrm{I}_{12} \\ & 1 \mathrm{~d}_{12} \\ & \hline \end{aligned}$	$\begin{gathered} 0.13 \\ 0.6 \end{gathered}$	$\begin{gathered} 0.14 \\ 0.7 \end{gathered}$	$\begin{aligned} & 1 \\ & 3 \\ & 1 \end{aligned}$	3 5 3
(Y.p) ${ }_{\text {c }}$	$\begin{aligned} & \gamma_{1} p_{1}, y_{1} \\ & y_{1}, p_{0} \\ & \gamma, p_{1} \\ & y_{1} \end{aligned}$	γ, h_{3} $\gamma_{m_{x}}$ γ, n_{10} γ, n_{13} γ, n_{14} γ, n_{1} γ, n_{16}	$\begin{aligned} & 4.19 \\ & 4.26 \\ & 4.59 \\ & 4.78 \\ & 5.91 \\ & 5.26 \end{aligned}$	$\begin{array}{\|l\|} \hline 4.08 \\ 4.21 \\ 4.53 \\ 4.72 \\ 4.97 \\ 5.15 \end{array}$	$\begin{aligned} & 5 i 2^{\circ} \\ & 32^{\circ} \\ & 3 / 2^{\circ} \\ & 5 / 2^{\circ} \\ & 32^{\circ} \\ & 1 / 2^{\circ} \end{aligned}$		0.6 0.2 0.1	$\begin{aligned} & 0.85 \\ & \\ & 0.45 \\ & 0.06 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	3 3 3 3 3 2
$(\%,)^{\text {a }}$		$(\gamma, n)_{\text {a }}$,	9.78-	7.17		p+8d		$\mathrm{S}_{-}=2$	0	3
(\%, $)_{4,}$		$(\gamma, n), \underline{0}$				prod			0	3
$(y, p){ }_{12}$		$(\%, \mathrm{n})_{10}$	$\underline{B}=1$			p+rd			0	3

Из соотношения (11), используемого для пересчета $\sigma(\gamma, p) \rightarrow \sigma(\gamma, n)$, видно, что результаты зависят от орбитынного момента / испускасмого нуклона. Всиичина l определена неоднозначно. В большинстве случаев можно указать лишь набор возможных значений (от $l_{\min }$ до $l_{\text {mar }}$). Это являятся главным источником неопределснности описывасмой процедуры восстановления фотонсйтронных сечений и приводит в конечном счете к двум крайним значсниям $\sigma(\gamma, n): \sigma(\gamma, n)^{\text {max }}$ и $\sigma(\gamma, n)^{m i n}$. Так, к примсру, дия уровней конечного ядра $S^{3 /}$ (см. табл. I4), имеюших примесь дырки в $l d_{3 / 2}$ и $l d_{3,2}$-подоболочках получены верхние $\sigma\left(\gamma, n_{i}\right.$ $\max ^{\text {и нижнис }} \boldsymbol{\sigma}(\gamma, n)^{\min }$ опцнки фотонейтронных сечсний при $l_{\text {min }} 1$ и $l_{\text {max }}=3$ соответственно. Для уровней с конфигурацией $\left(2 s_{1 / 3}\right)^{-1}$ псресчет выполнялся при сдинственно возможном значении $l_{\text {min }}=l_{\text {max }}=1.3$ начения $l_{\text {min }}$ и $l_{\text {max }}$ для различных парциальных каналов приведены в правой чпсти табл. 14.

 точки, сасдиненнье лииие (1) и их патурямые компонеиты

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ
ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S

 натуиримй ноннонент.

Рис.31. Придалххение

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S ${ }^{33}$

Рпс.31. Продолаенне

Энсрлстическисзависимостипарцивльныхфотонейтронных сечений, получснныс в результатс восстановления, изображены на рис.31. Светлые точкн, соединенные пиямой линией, дают верхнюю оценку $\sigma\left(\gamma, n_{1}\right)^{\text {nих }}$, а тёмные точки, таюже соединёиные прямой лиוєией, нижнюю оценку - $\sigma\left(\gamma, n_{i}\right)^{n / 1 / n}$. Из этих рисунков видно, что в области энергией возбуждения ядра $\mathrm{E}_{1} \geq 22$ МэВ интенсивно заселяются группы высокорасположенных состояний конечного ядри S^{31} с центрами тяжести $\mathrm{E}_{\mathrm{i}}=6.9,9.5$ и 12.5 M ВВ. Результаты анализа роли нуклонов различньх оболочек и формирования дипольных состояний ядра S^{32} (см.§2, rл.III) показали, что в этой области энергисй возрастает роль псроходов из внутрснней $1 р$-оболочки. Учитывая это обстоятельство, при получении верхıєй оценки $\sigma\left(\gamma, \eta_{i}\right)^{\text {mux }}$ дия укизинных групп уровней в качестве $!_{\text {min }}$ использоншиись $1=0$. Интсгральные всличины верхних и нижних оценок восстановленных парци风льньх фотонейтронньт сечений ядра S^{32} приведены в девятом столбце табл. 10 и используются в дальнсНилсм анализе.
М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОИКУЛОВА

 сечения, полученного пересчетои из фотопротонноги кинала; точки с

Для получсния энсргетической зависимости верхнсй и нижней оценок полного фотонейтронного сечения было произведено суммирование соответствующих оценок всех восстановленных парциальных $\sigma\left(\gamma, n_{i}\right)$ по i. Полученныс зависимости изображены на рис.32. Светлые точки, соединенные прямой линией, дают $\sigma(\gamma, n)^{\text {max }}$, а темные, такжс сосдинснные прямой линией $\sigma\left(\gamma, n_{i}\right)^{\text {minin }}$. На этом жс рисунке приведены данные непосредственных измерений на тормозном [24] (точки с ошибками) и квази-монохраническом [8] (штриховая линия) пучках фотонов.

Рис. 32 позволяет также уточнитъ значение орбитального момента фотонуклонов. Действительно, в области знергней возбуждсния ядра $\mathrm{S}^{32} \mathrm{E}_{\gamma}<20.5 \mathrm{M} 3 \mathrm{~B}$ энергстический ход эксперимснтяльных (γ, n)-сечсний хорошо совнадастс верхнсй оценкой восстановленного фотонейтронного сечения. Это позволяет сделать предсказание на величииу орбитального момента фотонейтронов. Очсвидно, что в риссматриваемой области энергией возбуждения ядра S^{32} состояния конечного ядра S^{32} заселяотся за счет вьлета фотонейтронов с $1_{\text {ıиі }}=1$.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

В области же энергий $E_{\gamma}>20.5$ МэВ слелать однозначное предскঞиние величины орбитального момента нуклопов трудно. Из рисунка видно, что эксперимснтальныс $(\gamma, n)-$ сечения хорошо вписывпотся в коридор нсопрсделенности восстановленных фотонейтронных сечений. Поэтому можно считать, что формирование полного фотонейтронного сечения при $\mathrm{E}_{y}>20.5 \mathrm{M}$ ВВ участвует фотонсйтроны с различиыми оптимальными моментами от $I_{\min }=0$ до $I_{\text {mas }} 3$.

Данные, полученные в результате восстановления фотонсйтронных сечсний, позволякя проанализировать и отношение вероятностей эмиссии фотопротонов и фотонейтронов в области ДГР ядра S^{32}. Напомпим, что согласно результатам ($\gamma, \mathrm{X} \gamma^{\prime}$)-эксперимент (см. §3, ил.П) полнос интегральнос фотопротоннос сечснис ядря S^{32} значительно превышает но величины его полное иптегратьное
 всроятностях эмиссни протонов и нсйтронов при распад ДТР самосопряжённих ядер обуславливпется лвумя факторами:

1) ризница в энергнях отделения протонов и нейтронов кинстический фактор;
2) смепивание по изоспину $\mathrm{T}=1$ и $\mathrm{T}=0$ состояний изоспиновый фактор.

Результаты процедуры восстановления фотонейтронных сечсний для ядра S^{32} показывает, что главным фактором, определяıшим различие в сечениях (γ, p) - и (γ, n)-реакций у ядра S^{32}, являются не изоспиновый фактор (отличие от 1 множителя $\left|\left(\alpha_{1}+\alpha_{0}\right) /\left(\alpha_{1}-\alpha_{0}\right)\right|^{2}$ в выражении (10)), а кинетический (за счет множителя $\sqrt{ }\left(\varepsilon_{p} / \varepsilon_{n}\right)$. ($\left.P_{n} / P_{n}\right)$ Действительно, порог (γ, n)-реакиии ни ядре S^{32} ($\mathrm{B}_{n}=15.4$ МэВ) существенно выше порога (γ, p)-реакции ($\mathrm{B}_{\mathrm{p}}=8.86$ МэВ). В силу этого происхолит подавление заселения высокорасположенпх уровней конечного ядра S^{31}. Это хорошо видно из рис. 31 .

Суммированием оценок восстановленного полного $\sigma(\gamma, n)$ и экспериментального полного $\sigma(\gamma, p)$ [23] можно получить полнос сечение фотопоглощения - $\sigma(\gamma, 11$ ллн). Это сечсние
М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

 сеченин, нояуинного суммнропаниен эксперимента.иного фотоиритонного
 ланные непосресттнеиных нзммерениа [21]

изображено на рис.33. Верхняя оценка сечения изображена свстыыми Точками, соединенными прямой линисй, темными точками, также сосдиненными между собой - нижняя оценка. Как видно из этого рисунка, структура и ио́сольотиня величина полученного полного сечения фотологлощения определястся в основном фотопротонным сечением (рщультат доминирования эмиссии фотопротонов), а неопределенность, вносимая неоднозначностъю фотонейтронных сечений, получснных пересчётом незначительна по величинс. Ширина коридора неопределенности для полного сечения фотопоглощения в области максимума ДГР составляет ~ 15 мб. Верхняя интегральная оценка полного сечсния фотопоглаиения, полученного в настояией работе, равна ~ $493 \mathrm{MэВ}$ мб , что хорошо соглисуется с величнной $\sigma_{(у, \text { ina:н) }} 480$ МэВ.мб, выпчкающей из клиссическою дипольноюо правила сумм.

На рис. 33 для няглядного сравнешия приведело также сечение полного фогопоглощения дия ядра S^{32} из непосредствснного эксперимента [21]. Видно хорошсс согласие в области $\mathrm{E}_{\gamma}<21 \mathrm{M}$ ВВ в то же время в оо́ласти энергий выше 21 M 3 B наши данные проходят выше на $30-40 \%$.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЈОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{3 \prime}$ И S ${ }^{32}$

Рис.34. Иуиспвновая схеми пизоукдения н иукнониого распада дипитьных состояий Іигиттского резоиаисн яара P^{3}

Учитывая величиты восстановлепньх парцияльных фотонейтронных сечсний, полученных в данном параграфе, можно дать более строгую, чем прежная (см.§2, гл.III), оценку вероятности дипольных яуклонных переходов $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow$ | 2 р для ядра S^{12}. Расчеты показали, что вероятность таких переходов состовляет $0.5-0.6$. Разброс величины данной оценки определиется неоднозначностью величин восстановленных фотонейтронных сечений ядра S^{32}. Эта оценка, в отличие от прежнси (~ 0.5) лучше согласуется с значением 0.56 , давасмым теоритическим расчетом [4].

dооторасынен. тетияs.

Сведения о распадных свойствах дипольньх состояний ядра P^{31}, полгучснныс нами в $\left(\gamma, \mathrm{X} \boldsymbol{\gamma}^{\prime}\right)$-эксперименте, позволяют проанализировать характер влияния квантового числа изоспина на особ́енности формирования и распада такнх состояний. В основном состоянии ядро ${ }^{\text {II }}$ имест изоспин $\mathrm{T}_{\sigma^{\prime}} 1 / 2$. Согласно концепцин изоспинового расщепления у ядра P^{31} при поглощении электрических дипольных фотонов возбуждаются состояния с $T_{<}=T_{0}=1 / 2$ и $\mathrm{T}_{>}=\mathrm{T}_{0}+1=3 / 2$, которыс вбирают в себи нсю вероятности дипольных переходов (рис.34).

Центры тяжести этих состояний $\mathrm{E}_{<}$и $\mathrm{E}_{\text {, смещены }}$ друг относительно друга, что приводит к изоспиновму расщеплснию $\Delta \mathrm{E}=\mathrm{E}_{>}-\mathrm{E}_{e}$. Положеннс уклянных состояний определяются из прецизионных измерений формы фотонейтронногосечения напучкеквазимонохроматических фотонов [8] (см.рис.2). Гросс-структура фотонейтронного сечсния дия ядра P^{31} указывает на то, что $\mathrm{E}_{<} \approx 18-18.5$ МэВ, $\mathrm{E} \approx 21-22$ МэВ. Получающаяся при этом величина изоспинового расщепления $\Delta \mathrm{E}$ хорошо согласуется c предсказаниями формулы [17] -

$$
\Delta E=E_{>}-E_{<}=60\left(T_{0}+1\right) / A M \ni B,(12)
$$

где - изоспин основного состояния ялри, и составляет ~ 3 M эВ.

На рис. 34 кроме основных конечных ядер показаны их низшие $\mathrm{T}_{>}$- состояния -0.68 M ВВ $(\mathrm{T}=1)$ для ядра ${ }^{\wedge}$ и $\sim 13 \mathrm{M}$ МВ ($\mathrm{T}=2$) для ядра Si^{30}. На рисункс триведены такжс чнсленные значения квадратов изоспиновых коэффициентов Клебша-Гордана, которые позволяот оценить вероятности соответствуюших переходов. Из рис. 34 видно, что распад ДГР ядра ${ }^{3 \prime}$ по протонному каналу может шити только на те состояния конечного ядра Si^{30}, которые имеют изоспин $\mathrm{T}=1$.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S^{32}

Заселение $\mathrm{T}=2$ состояний конечного ядра Si^{30} практически не должен происходить из-за большой энергии этих состояний (порог распада на состояния с $\mathrm{T}=2$ не меньше 20 M М). Напротив, распад $\mathrm{T}_{<}$и $\mathrm{T}_{\text {, }}$-состояния ДГР ядра P^{31} с вылетом нейтронов может идти на состояния с двумя знечениями изоспина (с $\mathrm{T}=0$ и $\mathrm{T}=1$), так как состояния с $\mathrm{T}=1$ в консчном ядре P^{30} лежит очень низко по энергии. Нейтрониый распад $T_{\text {го }} 1 / 2$-ветви ДГР ядра P^{31} на $\mathrm{T}=1$ состояния должкен бытьь подавлен (в три раза) по сравнению с анぃотичньм рисющиом на Т $=$ ()-состояния конечного ядра ". Paспад T _ $3 / 2$-ветви ДГР ядро P^{31} по нейтронному каналу на состояния с $\mathrm{T}=1$ явлнется единственной формой нейтронного риспада, и если учесть что дипольныс состояния с изоспином $\mathrm{T}_{\chi} 3 / 2$ возбуждиотся с вероятностью, примерно в 1.5 разя большей, чем $\mathrm{T}=1 / 2$ -состояния, то всё это должно приводить к интенсивному распалу $T_{>}=3 / 2$-встви ДГР ядра P^{31} по нейтронному киналгу.

Результаты ($\gamma, \mathbf{X} \gamma^{\prime}$)-эксперименга подтверждаюот эти выводы. Действительно, все состояиия ядри Si^{30}, перечисленные в табл.7, имеют один и тот же изоспин 1. Заслление уровнсй с $T=2$ не наблодастся. Растит $T_{<}$и $\mathrm{T}_{>}$-компонент ДГР ядра P^{31} по протонному каналу даёт сравнимый вклад в сечения заселения нижних уровней ядра Si^{30}. По мере роста E_{i} роль $\mathrm{T}_{\text {, }}$ - компоненты ДГР в сечении фотопротонной рсакщии возрастаст и уже для репкции ($\gamma, \mathrm{p}_{\mathrm{s}}$) она становится доминирующеі. Такое поведение парциальньх фотопротонньх сечсний подтверждиется и экспериментальными данными [15].

В фотонейтронной реакции, как следует это из табл.8, в отличие от (γ, р)-канала распада ДГР, заселяются состояния с двумя значениями изоспина 0 и 1 . Причём на долю $\mathrm{T}=1$ уровнсй конечногоядра ${ }^{10}$ приходитсядо 20% наблюдиемыхв ($\gamma, \mathbf{X} \gamma^{\prime}$)-эксперимснте неłҺтронных переходов. Интснснвный распад T. - компоненты ДГР по нейтронному каналу наблюдается и для других нечетнњх ядер $1 \mathrm{~d} 2 \mathrm{~s}-0$ болочки [76-79]. Доминирование $\mathrm{T}_{>}$-комгонснгы во всех $\left(\gamma, n_{\mathrm{i}}\right)$ каналах риспада ДГР ядра P^{31}, в которых заселяются уровни

с $\mathrm{T}=1$ приводит к тому, что максимум всех сечений реакций $\left(\gamma, n_{i}\right)_{T-1}$ должен располагаться при энсргии несколько вышс, чем максимум всех сечений реакций ($\left.\gamma, n_{i}\right)_{\tau=0}$, Такой характер распада ДГР ядра P^{31} подтвсрждается и данньтми работы [14].

Рассмотрим соотношсние между вероятностямн распада дипольного резонинса ядра P^{31} по протонному и нейтронному каналам. Напомним, что отношение интсеральнних сечсний (γ, p) и (γ, n)-репкций согласно данным нашего эксперимента составляет $1.4 \pm 0) 3$. Для объясиения этой величины обратимся к рис.34. Численные значения квицатов изоспиновых коэффициентов КлебшиГордана, ирсдставленных на рассматривณемом рисункс, позволяют в первом приближении оценить изоспиновый вес возбуждения и распада каждой из изоспиновых компонент ДТР ядра P'l $^{\prime \prime}$ по различннм фотонкулонным каналам. Соотвстсвуюоиие данные приведены в табл. 15.
 p" по различным фотонук:тоиным канитим

($\mathrm{T}_{\mathbf{4}} \boldsymbol{\\|} \mathrm{T}_{\boldsymbol{z}}$)	Изонпині состонникі консчाІІх ядер	($\%$, p)-киния	(y, n)-каналі
1/2	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	${ }_{1 / 3 \cdot 2 / 3=2 / 9}^{0}$	$\begin{aligned} & 13 \cdot 1=1 / 3 \\ & 1 / 3 \cdot 1: 3=1 / 2 \end{aligned}$
3/2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 2 / 3 \cdot 1 / 3=2,4 \\ 2 / 3 \cdot 1=2 / 3 \end{gathered}$	$\begin{gathered} 2 / 3 \cdot 2 / 3=4 / 9 \\ 0 \end{gathered}$
Суммяариніи 		1.11	0.89

Tиanuma 15.
Как видно, только за счет изоспина вероятность фотопротонной реакции должна в ~ 1.3 рвза превышать веролтность фотонейтронной реакции. Однако, согласно результатам нашего эксперимента, протонный распад из $\mathrm{T}_{>}$-состояний ДГР ядра ${ }^{\text {¹ }}$ на $\mathrm{T}=2$ уронни ядра Si^{30} нс идёт из-за высокого порога. Изоспиновый вес этой ветви возбуждения и распада в протонном канале согласно данным

табл. 15 составляет 0.6. Таким образом, это обстоятельство искльчает из анализа сразу $\sim 60 \%(\gamma, p)$-сечения, и если уточнить только изоспиновые факторы, то оказывается, уже доминируюшим будст фотонейтронный канал распала ДГР ядра P^{31}, что не отвечпет реальной ситуации. Но следует отметить, что на вероятности эмиссии фотопротонов и фотонсйтронов оказнвнет влиянис и кинсматика - ризностъ порогов фотонуклонных реакций. Напомним, что энергия отделения нейтронов в ядре P^{31} превышает энергию отделения протонов на 5 M МВ. Такия болыная велинина разности порогов фотонуклонньх реакций на ядре p^{31} в совокупности с выводими из концепции изоспииового расшспления анализируемого ядра оказывастся виолне достаточной для объяснения экспериментального значения соотнонения интегралыыых сечений (γ, p) - и (γ, n)-реакций.

Соотношение вероятностеі̆ эмиесин протонов и нейтронов у ядра р"1 можно поняті, и из сопостивления его с соседним самосогтряженным ядром S^{32}. Вероятіость эмиссии нейтронов у ядра P^{31} примерно в ~ 2 раза больше, чем у ядри S^{32}. Для последнего доминируст фотопротонная реакция, что объясняетяя существенно более низкой (на ~ 6 M э) энергией отделения протона по сравненню с энергией отделсния неіітрона. Уменъшенис протонного (и за счет этого увеличение нейтронного) выхода у ядра P^{31} обусловлено следующими причинами. Во-первых, подавлоннем вслсдствии очень высокого порога (20 M МВ) доминирующей с точки зрения изоспиновьх фякторов ветви пиотонного распада $\mathrm{T}_{>}=3 / 2 \rightarrow \mathrm{~T}=2$. Во-вторых, умсньшенисм (на величину около 1 МэВ по сравнснию с самосопряженным ядром S^{32}) разницы между нейтронным и протонным порогами.

ГJABA IV

ПОЛУІІРЯМОЙ МЕХАНИЗМ
 РАСПАДА ДГР ЯДЕР \mathbf{P}^{31} и S 32

I. Meroд omemin mosympsisoü rovmomemits нариина.

К числгу проблсм, рештение которыгх стило возможным
в результате получения эксперимепталыпых данньх о парциальньх фотонуклонньх сечсниях, относится выяснение роли различных механизмов фотоядерной реакции в области ДГР (в частности определение вероятности его полупрямого распаца). Различаются три типа распаиа ДГР - полупрямой, предравновесный (вылет нуклононв из $2 p 2 h, 3 p 3 h$ ит т.д. состояний) н равновесный (вылет нуклонов из компаунд-ядра). Теория распада высколежаних коллективных состояний, учитывающая все основные стадии этоוо процесса, сшё дилека от завсршения. Поэтому особый интерес представляют сведения о роли различных механизмов распада дипольного состояния, полученные непосредственно из экспериментальньх данных.

Для выделения полупрямой компоненты ДГР ядер $P^{\prime \prime}$ и S^{32} мы используем метод сопоставления фотонуклонных реакций с прямыми реакциями однонуклонной передачи.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

Наиболее развитым вариантом этого метода являстся метод, нодробно описаний в работе [6] и основанный на эксперименгальных данных о парциаыьных фотонуклонных сечениях из ($\gamma_{\mathrm{N}} X$) и ($\gamma, X \gamma^{\prime}$)-пाытов (X -нуклон), спектроскопических характеристиках заселяемых состояний из рсактъий однонуклонной передачи и выражсниях для ширины полупрямого распада, вытекатощих из R -матричной тсории [80]. Рассмотрим основные положения укжзанного метода [6].

Пусть для ядра А известны парцианыые фотопуклоныые сечения $\sigma\left(\gamma, x_{j}\right)$, где क означаст p или 11 , и индекс f огносится к определенному состоянию ядра $A-1$. Это сечение можно представитъ в следуюшем виде:

$$
\boldsymbol{\sigma}\left(\gamma, x_{f}\right)=\boldsymbol{\sigma}_{p h}\left(\gamma, x_{f}\right)+\Sigma \boldsymbol{\sigma}_{1 p p / h}\left(\gamma, m_{f}\right),(\mathbf{1 3})
$$

где σ_{μ}-полупрямая компонента сечения, а $\Sigma \sigma_{\text {мин }}(11 \geq 2$) -компонеита сечения, формируюпияся за счет мехынизмов распада, отличнъх от полупрямого (предравновесного и равновесного). $\sigma_{p h}\left(\gamma, \alpha_{f}\right)$ при любой энергии возбуждения E_{4} коллективного дипольного состояния $\mid y>$ ядра A пропорционально шириие $\Gamma_{n}^{\dagger}(q \rightarrow f)$ полупрямого распада состояния $\mid q>$ на f й уровень консчного ядра $A-1$. Это обстоятельство может быть использовано для выделения механизма фотоядерной реакции и прежде всего для выделсния полупрямой компонснты.

Если для какого-либо ядра известны парциณльные фотонуклонные сечения и доля полупрямых процессов хотя бы в Одном из этих сечений, то эта доля может быть найдена и для остальных парцифльных сечений при условии, что удаётся оценить отнопение соотвотствующих щирин полупрямого распада $\Gamma_{\mu}^{\dagger}(q \rightarrow f)$.

Рассмотрим два парциальных фотонуклонных сечения $\sigma\left(\gamma, x_{1}\right)$ и $\sigma\left(\gamma, x_{k}\right)$. Полупрямые компоненты этих сечений связаны соотношением:

$$
\boldsymbol{\sigma}_{p h}\left(\gamma, m_{i}\right) / \sigma_{p h}\left(\gamma, \infty_{k}\right)=\Gamma_{\nu}^{i}(q \rightarrow i) / \Gamma_{i 0}^{\dagger}(q \rightarrow k)(14)
$$

Если известно, например, $\sigma_{p h}(\gamma, \infty)$) и отнопсние $\Gamma_{i \infty}{ }^{\dagger}(q \rightarrow i) /$ $\Gamma_{\nu}^{\dagger}(q \rightarrow k)$, то $\sigma_{p h}\left(\gamma, \infty_{k}\right)$ находится из выражения [14]. В случае когда полупрямой распад доминирует в обоих парциальньх каналах (γ, ∞_{i}) и $\left(\gamma, \boldsymbol{o}_{k}\right)$, должно выполняться соотношение

$$
\begin{equation*}
\sigma_{p h}\left(\gamma, \infty_{i}\right) / \sigma_{p h}\left(\gamma, \infty_{k}\right) \approx \Gamma_{y \prime}^{1}(q \rightarrow i) / \Gamma_{2}^{\dagger}(q \rightarrow k)(15) \tag{15}
\end{equation*}
$$

и наоборот, вынолнение соотношсния
свидетельствует о том, что полупрямой распад доминирует в сравниваемьх парциальных сечениях.

Возможность использования описьвасмого метода выделения полупрямой компоненты ДГР ядер нспосредственно связана с возможностью получсння оценок отношения парциальньх ширин полупрямого распада $\Gamma_{\rho}^{\prime}(q \rightarrow f)$. Для точного расчета $\Gamma_{s}{ }^{\prime}(q \rightarrow f)$, а значит и их отнопнний нсобходимо знать волновую функлию распадаюоцегося коллективного состояния $\mid q>$ ядра A.

Для ядер с незаполненной внешнеね оболочкой в приближении случайных физ (open-shell RPA [81]) |g> записывается следуощим образом:

$$
|q\rangle=|0\rangle,(16)
$$

где α, β-индексы, различаюшие одночастичные состояния (неравенство $\alpha>\beta$ означает, что энергия нуклона в одночастичном состояния $|\alpha\rangle$ больше, чем в состоянии $\mid \beta>$; , оперяторы рождения и уничтожения нуклона в одночастичном состоянии $\mid \alpha>; X_{\alpha \beta}(q)$ и $Y_{\text {бв }}(q)$-коэффициента разложсния, и $\mid 0>\psi_{0}\left(J_{0}, T\right)$-волновая функция основного состояния ядрп А со спином J_{ρ} и изоспином T_{o}, под которой, так же как и в полумикроскопической модели ядсрных колебаний ([ІМК) [48] понимается не частнчно-дырочный вакуум, а истинное основное состояние ядра-мишени. Расчёты в рамках ПМК $[4,48]$ показали, что $Y_{\alpha \beta}(q) \ll X_{\alpha \beta}(q)$, поэтому в дальнейшем полагаем

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕППЕНИЯ ЯДЕР ${ }^{31}$ И S 32

$$
|q\rangle=,(17)
$$

что означаст пренсбреженис корреляциями в основном состоянии (приближение Тамма-Данкова). Оказынается, что во многих практичсски важных случаях даже бсз знания коэффициентов $X_{\text {аß }}(q)$ могут быть получены верхняя и нижняя оценки для $\Gamma_{a}{ }^{\dagger}(q \rightarrow i) / \Gamma_{v}^{\dagger}(q \rightarrow k)$, и эти оцепки не на много о"личаются друг от друга.

Для нечетных ядер, как показано в работе [6], парииальная ширина полупрямого распада имеет следующий вид

$$
\begin{aligned}
& \Gamma_{\nu}^{\dagger}\left(T_{q} \rightarrow f\right)=\text { const }\left(1 / 2 \tau_{\alpha} T_{f} T_{o}-\tau_{a} \mid T_{q} T_{j}\right)^{2} \\
& R_{\beta}(q) S\left(f_{\beta}\right)\left(2 j_{\|}+1\right) \Sigma_{a} P_{a}(\varepsilon) X_{u \mid \beta}^{3}(q),(18)
\end{aligned}
$$

где const - постоянный множитель для данного ядра; ε_{f} -кинетическая энергия для вылетеншего нуклона; $\langle N\rangle_{\text {д }}$ число пуклонов на подоболочке β в основном состоянии ядра; (........) - копффнциент Клсбша-Гордона; $\{. .$.$\} - 6 j$ -символ Вигнера; τ_{u} - проекция изоспина вылетевшего нуклона ($\tau_{u}=1 / 2$ для неф̆тронаи $-1 / 2$ для протона); T_{f}-изоспин консчного состояния; $S\left(f_{\beta}\right)$ - спектроскопический фиктор дырочного возбуждения в подоболчке β, присутствующего в заселенном состоянии ядра $A-1 ; P_{\text {" }}\left(\varepsilon_{j}\right)$ проницасмость барьеря для нуклона, вылетевшего с подоболочки α. Суммирование по а по-существу сводится к суммированию по орбитањному момснту $/$ вышстаюцего нукıона. $R_{\beta}(q)$ имеет следуюший вид

$$
R_{\beta}(q)=v_{\beta}(n)+v_{\beta}(p),(19)
$$

гдс $v_{\beta}(n)$ и $v_{\beta}(p)$ - нейтронная и протонная заселенности подоболочки $\beta\left(v_{\beta}(n)\right.$, например, равна $\left.\langle n\rangle_{\beta} /\left(2 j_{\beta}+1\right)\right)$, которые также как и $<N>_{\beta}$ и $S\left(f_{\beta}\right)$, берутся из экспериметнальных данных реакций однонуклонной передачи.

Вырижение (18) сохраняет в явном виде изоспиновую струкгуру состояний ДГР нечетного ядра. Напомним, что

М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

для нечетного ядра спин и изостин основного состояния (J_{o} и T_{o}) отличны от нуля, а спин и изоспин дипольных состояний можег принимать различные значсния (для $J_{q}-$ три значения: $J_{o}, J_{v} \pm 1$, а для T_{q} - два значения: $T_{o}, T_{o} \pm 1$). В то же самое врсмя для четно-четных самосопряженных ядер спин и изостин основного состояния ранны нулю ($J_{0}=T_{0}=0$) и, поэтому, все состояния ЛГРР будут иметь одинаковые (зарансс известные) квантовые характсристики ($J_{0}^{\pi}=1^{-}$и $T_{q}=0$). Все это в значительной степени упрощает выражение для ширии полупрямого распада ДТР четно-четыых ядер и оно имест следующий внд

$$
\Gamma_{\infty}^{\dagger}\left(q \rightarrow f_{\beta}\right)=\text { const } S\left(f_{\beta}\right) \Sigma_{\alpha} P_{\alpha}\left(\varepsilon_{f}\right) \mathbf{X}_{\alpha \beta}^{2}(q),(20)
$$

Выражения (18) и (20) справедливы для дипольных персходов из внеппнсй оболочки ядра А. Иными словами в этих нырижениях индекс β относится к одночастичным состоянням во внешнеі̆ оболочке, а $\alpha-\kappa$ одночастичным состояниям В євободной оболочке.

Из выражений (18) и (20) видно, что парцнальная ширина полупрямого распада коллекюивного динольного состоянья ядра А пропорциональна спектроскопкческому фактору 5 дырочного возбуждения, присутствующего в заселенном состоянии ялра А-1. Суиествование корреляции межлу величинами парциальых фотонуклонных сечений и спектроскопнческими факторами подхвата использовалось ранее $[39,82-84]$ в основном для качественных выводов с роли полупрямых процессов в ДТР легких ядер.

Сравнителнно простая структура выражений (18) п (20) позволяет испольховать их для выделения полупрямьхх компонент фотонуклонных сечений ядер с незаполненной внешней обылочкой, еслн потрочные конфитуранин заселяемых состояний консчного ядра принидлежат одной и той же подобюлочке β. В частности, отношсние парциаиьных ширин полупрямого распада для таких фотонуклонных

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S 32

сечений в случас четно-четньх ядер будет опредсляться выражением

$$
\begin{gathered}
\Gamma_{w}^{\dagger}(q \rightarrow i) / \Gamma_{w}^{\dagger}(q \rightarrow k)= \\
=\left(\Sigma_{\alpha} P_{a}\left(\varepsilon_{p}\right) \mathbf{X}_{\alpha \beta}^{2}(q) / \Sigma_{a} P_{u}\left(\varepsilon_{k}\right) \mathbf{X}_{\alpha \beta}^{2}(q)\right),(\mathbf{2 1})
\end{gathered}
$$

Без знания коэффициентов $X_{\alpha \beta}(q)$ можно в этом случае получить верхнюю и ннжнюю оцснкн $\Gamma_{\nu}{ }^{\dagger}(q \rightarrow i) / \Gamma_{\nu}{ }^{\dagger}(\iota \rightarrow k)$, отвечаюшие доминирутощему вылету нуклонов с крайними, допустимыми правилами отбора, значениями орбитального момента l. При этом коридор возможных зничсний отношения (21) оказывяется не очень широким.

Рассмотрим электрическис дипольные переходиы из $1 d 2 s-0 б о л о ч к и$. В этом случае одночистичные сосгояния $\mid \alpha>$ приналлежат 1$\} 2 p-0$ болочке и в результате полугрямого распада возможен вылет нуклонов с $l=1$ или 3. Можно показать, пользуясь свойствами проницаемости $P(\varepsilon)$, что если $\varepsilon_{i}>\varepsilon_{k}$, то будет выполняться соотношение, (22) где $P_{1}(\varepsilon)$ и $P_{3}(\varepsilon)$ - проницасмости бирьера лля нуклонов с $l=1$ и 3 соответственно. Соотношение (22) позволяет получить верхнюю и ннжнюю оцснки $\Gamma_{n}^{\dagger}(q \rightarrow i) / \Gamma_{n}{ }^{\dagger}(q \rightarrow k)$, отвечаюшие вылету нуклонов либо толыко с $l=1$, либо только с $l=3$. В соответствии с этим с помощью соотношения (14) можно получитъ верхнюю и нижнюю оценки $\sigma_{p h}\left(\gamma, \infty_{k}\right)$, если известно $\sigma_{p 1}\left(\gamma, \infty_{i}\right)$.

С помощью вышеизложенного подхода можно оценивать ширины полупрямого распада также для парциальных фотоядерных сечений, отвечающих эмиссии нуклонов разного типа. Зная, напримср, парциальные сечсния в фотопротонном канале, можно оценивать парциальные сечения в фотонейтронном канале и наоборот.

Для того, чтобы с помощюю описываемого метода выделятъ полупрямые компоненты фотонуклонных сечсний, необходимо знать долю полупрямьх процессов

хотя бы в одном из них. Для ядер $I d 2 s-$ оболочки в качестве таких сечений (в дальнейшем мы будем называть их опорными) могут быть иснользованы сечений рсакшии $(\gamma, p$,). Флуктуационный анализ тонкой структуры сечений этих реакций, выполненный в раоотах [85-90], показал, что полупрямой механизм распала доминируст в формировании этих сечений. Так для ядер ${ }^{23} S i, S^{32}$ и ${ }^{\text {80 }} \mathrm{Ca}$ вероятность полупрямого распада в ($(,, p$,)-каналс составляет соответственно 96,90 и $99 \%[4,86,89]$. Об этом жс свидетельствует отчетливая корреляция между спскгроскопическими факторами $\mathrm{C}^{2} \mathrm{~S}$-основных состояний конечных ядер и интегральными величинами ($\%, p_{1}$)-сечений [5,78]. Степень такой корреляции демонстрирустся рис. 35 .

Рис.35. Сравиение даниых реакции (у.ро) (верхиии рисунок) в притовного

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

На всрхней части рисунка приведены величины интегралиных сечений реакции (,p_{0}), отнесенные к классичсскому дипольному цравилу сумм (60.NZ/A (МэВ,мб)), а на нижней - величины $C^{\prime} /(z-8)$, где (z-8) число протонов вне инетрного кора ${ }^{10} \mathrm{O}$. Корреляция с данными реакпий подхвата наблюдастся также и для парџиальных фотонкулонных сечений заселения первых возбужденных состояний конечных ядер [5,39,82,84]. Это указываст на то, что полупрямой распад доминирует и в этих парциальных сечениях. Такой же результат получен в расчетах парциалных каналов нуклонного раслада ДГР ялер ${ }^{*} \mathrm{Si}$, S^{32} выполненных в рамках полумикроскопической модели ядерных колебаний и комбинированной модели распада [4,91]. Для отбора парциальньх фотонуклонных сечений, формируюшихся преимущественно зя счет полупрямого распада, можст быть использован и критерииі (15).

Как уже отмечалось для четно-четного ядра $S^{32} J_{o}=-$ $T_{o}=0$ и все состояния ДГР этоло ядра имеют одинкковые квантовыс характеристики $\left(J_{q}^{x}=1^{\cdot}\right.$ и $\left.T_{q}=0\right)$. Это позволяет применитв изложенный в предыдущем параграфе мстод оценки всроятности полупрямого распада ДГР к энергетнческим зависимостям парциальных фотопротонньх [23] и фотонейтронных сечений анялизируемого ядра. Напомним, что энергетическая зависимость парциальных фотонеитронных сечений получена пересчетом из фотопронного канала (см.§4, гл.III) с учетом данных ($\left.\%, X \gamma^{\prime}\right)-$ эксперимента.

Оценка вкладка полупрямых процессов в распщд ДГР ядра $S^{\prime 2}$ проводилась с помощью выряжений (14,20 и 22).

При этом использовалась программа "'GAMMA" комплекса программ по обработке данньх ($\gamma, X y^{\prime}$)-эксперимента (см. $\S 2$, гл.II). Прсдварительно были выбраны опорные сечения. В фотопротоннном канале расгада ДГР ядра S^{32} в качестве таких спорных сечений могут быть использованы основное и два нижних возбужденных состояния конечного ядра p $^{\prime \prime}$. Во-первıіх, анализ информации о дырочной структуре зассляемых состояний (см.§।, гл.III) позволил установить, что основния часть спектроскопической силы дырочных возбуждений в подоболочньх $2 s_{12}, l d_{32}$ и $l d_{32}$ ядра S^{33} концетрирустся на состояннях с $i=0,1$ и 2 соответствснно (см.табл.9), и следовательно, вероятность полупрямого распада на эти уровни должна быть большой. Так, флуктуационннй анализ тонкой структуры сечсния (γ, p_{0})реакции на ядре S^{32}, выполиенный в работе [89] показал, что вероятность полупрямого раснада в (γ, p,)-канале составляет около 90%. Во-вторых, расчеты пирииальных каналов нуклонного распада ДГР ядра S^{32}, выпонннные в рамках полумикроскопической модели ядерных колсбаний и комбинировынной модели распада ДГР прямо указывают на доминирующую роль полупрямых процессов в каналах $\left(\gamma, p_{0}\right),\left(\gamma, p_{2}\right)$ и $\left(\gamma, p_{2}\right)[4,91]$.

Таким образом, вышеперечисленные аргументы позволяют залиючить, что полугрямой проиесс доминирует в формировании фотопротонных сечений эпселения самых нижних (основного, первого и второго возбужденных) состояний конечного ядра р"

Исходя из энергетической зависимости этих сечений рассчитывалась доля полупрямых процессов в остальных $\sigma(\gamma, p)$-сечениях, где есть примесь дырок в подоболочках $2 s_{1 n}, I d_{32}$ и $I d_{52}$. Расчет проводился для всех возможных l. Так, дыя дырочных состояний $\left(1 d_{5 j}\right)^{-1}$ и $\left(l d_{33}\right)^{-1} l=1$ и 3 , а для $\left(2 s_{1 / 2}\right)^{-1} \mid=1$. Неоднозначность орбитального момента

ИССЛЕДОВАНИЕ ІІАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

вылетевшсго нукона давала два крайних варианта: $\sigma_{p \text { max }}{ }^{\text {max }}$ и $\sigma_{\text {min }}^{\text {min }}$. Результаты расчетов (верхние и нижиие оценки $\sigma_{p h}(\gamma, p$.) вместе с самими парциальными сечсниями) приведены на рис. 30 и изображены сплошной и штриховой линиями соответственно. Светлыми точками изображены парıиялыые фотопротоннысссчения ядра S^{32}. Интсгриыьныс величины полученных полупрямьх компонент парииальных фотопротонньх сечений приведены в дсвятом столбце табл.9.

Считчиось, чาо парциалныс фотоиротонныс сечсния заселения тех состояний конечного ядра, котоןыை не проявляוотся в реакциях протонного подхвата (для них в табл. 9 не представлены значения $C^{2} S$), полностъю формируюотся за счет статистических процессон. Как отмецมเось выше, основнос, Ісрвос и второс возобуждённые состояння, заселяются в основном за счет полупрямого распила ДТР. При заселении остальных, проявляющихся в реакциях подхвата, состояний коненного ядра полупрямые процессы итрают сушественную роль в (γ, p, и и ($\left.\gamma, p_{.}\right)$-кнньлах. Полупрямые компонснты других (γ, ρ_{p})-сечений оказлиись достаточно малы. Следовательно, прн их формировании доминируют более сложные, чем полупрямые, механизмы распада.

Нсобходимо подясркнуть, что в ($\gamma, X \gamma^{\prime}$)-эксперименте нс наблодалось заселение состояний конечного ядра $P^{3 /} с$ $E_{l}=4.78,5.91$ и 7.21 M В. В то же время из анализа реакций однонуклонного подхвата следует, что при распаде ДГР ядра $S^{\prime \prime 3}$ возможно заселение этих уровней. Проведенные расчсты доли полупрямьгх процессов в парциальньх фотопротонньх ссчсниях позволилн оценить возможные значения интегральных сечений заселения уровней с $E=4.78,5.91$ и 7.21 M ЭВ. Они оказались малы по величине и не превышали значения величины экспериментальной погрспности эксперимснта. Данные результаты внесены в

М.Х. ЖАЛИЛОВ, У.Р. АРЗИБЕКОВ, Ш.Н. ХУДОЙКУЛОВА

6 столбец табл. 9 как верхние и нижние оценки.
Использусмый в настоящей работе мегод выделения полупрямой компоненты в фотонуклонных сечениях позволяет оценить вклад $/ p / h$-состояний обусловленных дипольными переходами голько из внешней $1 d 2 s$ оболочки ядра S^{32}. Оценка доли полупрямого механизма распада динольных состояний, отвечаноцих переходам из внутренней $/ p$-оболочки, требует более сложных выражений для расчета парциальной ширины полупрямого распада $\Gamma_{\jmath}(q \rightarrow i)$. Полагалось, что неизвестный вклад полупрямой компоненты в сеченис заселения состояния с $E_{i}=7.98 \mathrm{M}$ ЭВ, имеющсго примесь дырки в $/ p_{1 / 2}$-подоболочке, не внесет существенных изменений в окончательную оценку доли полупрямых процессов в распиде ДГР ядра $S^{\prime \prime}$. Справедливостъ данного предполжения подтверждается резулитатами теоретических расчстов [91], ғде показано, что доля полупрямых процессов в сеченни заселения сослояниіі ядра $P^{\prime \prime}$, леж风щих в энергетическом интервале $5.9-8.2$ МэВ, невелика.

На рис. 36 ляя ядра S^{32} изображено полное фотопротонное сечение и его полупрямяя компонента, полученная суммированием по рассчитанным $\sigma_{p h}(\gamma, p)$. Гросс-структура полного сечения (γ, p)-реакции достаточно сложна. Наблюдастся несколько широких максимумов при энергиях $17,19.5,22$ и 25 МэВ. Поэтому роль полупрямьх процессов в формировннии этого сетения удобно анализировать, разбив сго ня условныс интервалы по энергни возбуждсния ядра-мишени ($12.0-17.5 ; 17.5-20.5 ; 20.5-23.5 ; 23.5-30 \mathrm{M}$ ВВ) в соответствии с наблодаемой структурой.

Результаты анализа приведены в табл.16. Из таблицы видно, что в области энергий возбуждсния исходного ялра $S^{32} E_{\gamma}=12.0-17.5 \mathrm{M}$ В доминнрует полупрямой мсханнзм распада. В следующих же двух энергетических интервалах наблодается возрастание роли распадов, обусловлениих более сложными, чем $/ p / 1 /$-конфигурациями.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

Рисл36, Всрхвяя (сплошиии крнвая) и инжняя (штриховая) оиенєи полупрммой компоиеиты пилиого фототритопиоро сечения [23] (спетлые точкн, соединснныс тинисіІ) ядра S^{3}.

Вероøтность W полууримых прощессов н рнакциях $(\boldsymbol{\gamma}, \mathbf{p}),(\gamma, n)$ н фотонопиошения на ядре \mathbb{S}^{32}.

Энергети-ческий иитерания $\left.E_{1}-E_{1}(M) B\right)$	Вуроятность W' полупрлмых прицессин			
	(y, p) реякция	$(\gamma, n)-$ реакция	фотопоглощение	
			тксиеримент	тсория
12.0-17.9	0.48-0.65	0.8-1.0	0.49-0.69	0.76
17.5-20.3	0.35-0.44	0.86-0.96	0.36-().53	0.45
20.5-2,3,5	0.23-0.28	0.06-0.78	0.24-0.40	0.07
23.5-30.0	0.17-0.61	(0.45-0.62	0.25-().55	0.07
	361	$43-132$		
W' (110 milum сьчении)	0.31-0.50	0.74-0.79	0.35-(). 54	0.40

Таблнца 16.

В области энергий $\mathrm{E}_{\mathrm{y}}>23.5 \mathrm{M} 3 \mathrm{~B}$ нсопределенность в оцснках всроятности полупрямого механизма рсакцин возрастает, поскольку всё большую роль ничинаот играть переходы из 1 р-оболочки, в частности, $1 \mathrm{p} 3 / 2 \rightarrow 1 \mathrm{~d} 2 \mathrm{~s}$. В качествс верхнсй оцснки вероятности полупрямых процессов в рассматриваемой области энергий было взято сечение заселения групп состояний с центром тяжести E_{i} $=12.5$ МэВ. Вероятностъ полупрямого мехинизма распала в данном энергетическом интервале соствляет (0.17-().61. Интегральния вероятностъ полгпрямьхх процессов в полном фотопротонном сечении $0.31=0.50$.

Для оцснки всроятности полупрямых процессов в (γ, n)-канале в качестве опорных сечений использовались, также как и в фотопротонном канале, сечения заселения трсх самых ннжних состояний (см.табл.10) консчного ядра S^{31}. Следует подчеркнуть, что в качестве опорных сечения можно использовать и парииальные (γ, p_{i})-сечения первых трех состояний ядра $P^{J \prime}$, так как применяемый н настояицей работе метод анализа позволяет оценивать доли полупрямых процессов обуеловленных эмиссией нуклонов рязного типа. Оба варианта расчет дают олинаковыс результаты.

Рсзультаты расчетов вероятности полупрямых процессов в парциальных фотонейтрониых сечениях, вместе с восстановленными из фотопротонного канала $\sigma\left(\gamma, n_{i}\right)$, показаны на рис.31. Интегральныс величины парциальных полупрямых компонент приведены в 9 столбце тыбл.10. ИЗ рис. 31 и табл. 10 видно, что в фотонсйтронном каналс, также как и н фотопротонном, полупрямые процессы доминируют в сечениях заселения состояний с $i=0,1,2,4,8$ и 12 . Для остальных конечных состояний, проявляюпихся в реакциях неЇтронного подхвата (см.табл. 10 , столбец 5), доля полупрямых процессов оказывалысь небольшой. Вероятность полупрямых процессов в сечениях заселения групп уровней ядра S^{31} с энсргиями $5.78-7.17$ МэВ составляет всего $0.19-0.24$.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

Величины энергий симметричньх зсркальных состояний конечных ядер P^{31} и S^{31} (см.табл. 14) не сильно отличаюотся друг от друга. Учитывая это, полагалось, что и при высоких энергиях возбуждения ядра S^{31} наблюдается заселение состояний с $\mathrm{E}_{\mathrm{i}}=9.68$ и 9.97 МэВ и примерно с такими же спектроскопическими характеристиками, какис имеют соответствуюшие состояния в ядре p". Расчет вероятности полупрямьг процессов в сечсниях заселсния этих состояний даёт малуюо величину ($0.06-0.14$). Для уровня с $\mathrm{E}_{\mathrm{i}}=4.97 \mathrm{M} 3 \mathrm{~B}$ и группы состояний с центром $\mathrm{E}_{\mathrm{i}}=12.5 \mathrm{M}$ эВ в качсствс верхней оцснки доли полупрямых процсссов взяты верхние оценки парциалыных фотонейтронньх сечениі̆, пересчитанных из соответствуюших парциальных фотопротонньхх ссчений.

Суммированием $\sigma_{\text {ри }}\left(\gamma, n_{i}\right)$ по всем i, получена полупрямая компонента полного фотонсйтронного ссчсния. На рис.37. представленны ее верхняя (сплошная) и нижняя (штриховяя) оценки. В отличие от фотопротонного канала, где статистические происссы начинают давать заметный вклад уже при энергии возбуждения исходного ядри $\mathrm{E}_{y} \approx$ 17.5 МзВ, в фотонейтронном канале полупрямые процессы доминируют вплотъ до энергий $\mathrm{E}_{\gamma} \approx 23.5 \mathrm{M}$ В (см.третий столбец табл.16). Вероятностъ полупрямьх процессов в полном фотонейтронном сечении составляет 0.74-0.79.

Представляет интерес анализ сечения фотопоглощения $(\sigma(\gamma, n о л н)=\sigma(\gamma, p)+\sigma(\gamma, n))$ и роли полупрямьх процессов в его формировании. На рис. 38 светлыми и темными точками, сосдиненными тонкой линией изображены соотвстсвснно верхняя и нижняя оценки сечения фотопоглощения,

Сплошная и штриховая представляют их полупрямые компонснты. Для сечсния фотопоглощения, также как и для полных фотопротонного и фотонейтронного сечений, првведен анализ вероятности полупрямых происссон в различных интервалах энергии возбужџения

 оцснка - штрияовяя) сечения фотоиоглощения (светлыо точки - всрлияя

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

исходного ядра．Полученные результаты привсдсны в табл．16．Здесь же для сравнения приведены результаты теоретического расчста［91］всроятности полупрямых процессов с использованием реалистических плотностей многачстичных－многодырочных кон（）игураций．Согласно напим оценкам всроятность полупрямых происссов в сечении фотопоглоцения составляет $0.35-0.54$ ．Эта всличина находится в хорошем согласии с тсоретичсским значением $\mathrm{W}=0.4$ ．

Для нечетно－четного ядра $P^{3 \prime}$ вероятность полупрямых процессов извлекастся из проинтегрированных по энергии γ－квантов парциальньхх фотонкулонных сечений（ $\sigma^{\text {dnt }}(y, x$,$) ）．$ В связн с этим используется применимый для анєлиза интегрแтьнљх парциальных сечсний вириант обицго метода， изложенного выше（см．$\$ 1$ ，гл．IV）．Рассмотрим этот вациант непосредственно на примере ядра $p^{\prime \prime}$ ．

Для этого ядра сприведлива конпцпция изоспинового расшепления ДГР．Поэтому последний удобно представить в виде двух состояний $T_{q}=1 / 2$ и $3 / 2$ ，вбирающих в себя всю вероятность дипольных переходов．Как известно，энергии этих состояний $E\left(T_{\nearrow}\right)$ и $E\left(T_{乞}\right)$ равны центрам тяжести соответствуюших изосішновых комионент．Для ядра $P^{3 \prime}$ в соответствии с данными $\S 5$ гл．III в качестве $E\left(T_{\nu}\right)$ и $E\left(T_{\nu}\right)$ были выбраны значения 18.3 и 21.2 M МВ．

Вырыжение（13）оста⿷⿱⺈⿻コ一心 сся справедлиным и после зимены в нём $\sigma(\gamma, \nsim), \sigma_{p h}(\gamma, \infty)$ и $\sigma_{\text {иррй }}(\gamma, \infty)$ на соответствуІощие интегральные сечсния $\sigma^{\text {int }}(\gamma, \infty), \sigma_{p h \prime}^{\text {III }}(\gamma, \infty)$ и $\sigma_{m p n h}^{i m \prime}(\gamma, \infty)$ ． Очевидно，$\sigma_{p h}^{\text {int }}(\gamma, \infty)$ ）может быть представлено в следуюющем виде

$$
\sigma_{p h}^{l n}\left(\gamma, \infty_{f}\right)=\sigma_{<}\left(\Gamma_{<}^{\dagger}(f) / \Gamma_{d}\right)+\sigma_{>}\left(\Gamma_{>}^{\dagger}(f) / \Gamma_{\nu}\right),(23)
$$

где $\sigma_{<}, \sigma_{i}$ и $\Gamma_{<}, \Gamma_{>}$-сечения возбуждсния и полные (с учетом не только полупрямой, но предравновесной и равновесной (рорм нуклонного распада) ширины распад $\mathrm{T}_{<}$ и $\mathrm{T}_{>}$- состояний, образуюпих ДГР, а $\Gamma_{<}^{\dagger}\left(f^{\prime}\right) \equiv \Gamma_{s o}^{i}\left(T_{c} \rightarrow f\right)$ и $\Gamma_{>}{ }^{\prime}(f) \equiv \Gamma_{n}{ }^{\dagger}\left(T_{>} \rightarrow f\right)$-ширины полупрямого распада $\mathrm{T}_{<}$и $\mathrm{T}_{\text {, }}$ -состояний о образованием конечного ядра в состоянии f. Послсдние вигисляются с помопњю выражения (18).

Полупрямые компоненты $\sigma_{p h}^{\text {int }}$ двух интегральньхх парциальных ()отонуклонных сечений заселения состояний i и k консчннго ядра, дњрочная конфигурагияя которьхх принадлежит одной подоболочке, связаны соотношением:

$$
\sigma_{p h}^{i n t}\left(\gamma_{,}, \partial\right) / \sigma_{p h}^{i n t}\left(y_{,} \partial_{k}\right)=\left(\sigma _ { < } \left(T_{<}^{\dagger}(i)+a \sigma_{>}\left(\Gamma_{>}^{\dagger}(i)\right) /\left(\sigma_{<} T_{-}^{\dagger}(k)+a \sigma_{>}\left(\Gamma_{>}^{\dagger}(k),(2 A)\right.\right.\right.\right.
$$

где $a=\Gamma_{e} / \Gamma_{>}$. Выполнение такого же соотношения и для самих интегральньх парциальных фотонкулонных сечений будет свидетельствовать о том, что полупрямой распац доминируст в их формировании (андьгнчно выводу, следующему из выражения (15)).

Вместо $\sigma_{,}$и σ, в выражении (24) можно исполъзовать вероятности возбуждения $\mathrm{T}_{<}$и $\mathrm{T}_{>}$компонент ДГР, которыс для ядра ${ }^{3 /}$ Р в соответствии с предсказаниями работы [16] равны 0.38 и 0.62 . Константа $a=\Gamma_{<} / \Gamma_{\text {, }}$ неизвестна и должна быть параметром расчета. Оббычно константу а выбирают из условия наилучшего воспроизведения окспериментатьньх данных. С ев̆ помощыо можно учестъ рঞличие в структуре волновых функций $T_{<}$и $T_{>}$-состояний.

Напомним, что для вычисления $\Gamma_{c}{ }^{i}$ и $\Gamma_{>}{ }^{\dagger}$, согласно выражениям (18) и (19), необходимы данные о протонных и нейтроннњх заселенностях внепннх подоболочек ядра ${ }^{3 /} \mathrm{P}-1 d_{s / 2}, 2 s_{1 / 2}$ и $1 d_{3 / 2}$, а также сведения о полныхх числах нуклонов на этих подоболочках. Соответствующая информиция получена из решкций однонуктонной передачи и обсуждалась выше (см.§1, гл. ІІ).

В $\Gamma_{<}^{\dagger}$ и $\Gamma_{>}^{\dagger}$ входят суммы $\Sigma_{\alpha>\beta} P_{\alpha} X^{2}{ }_{\alpha \beta}(q)$. Для дннольных

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S 32

переходов нуклонов из подоболочек $/ d_{1 / 2}$ и $I d_{3 / 2}$ в оболочку $1 f 2 p$ эти суммы можно представитъ в следулощем виде

$$
\boldsymbol{\Sigma}_{\mathrm{u} \nu \hat{}} P_{\mathrm{a}} \mathbf{X}_{\mathrm{u} \mathrm{\beta}}^{2}=P_{I} \mathbf{X}^{2}{ }_{l}+P_{J} \mathbf{X}_{3}^{2},
$$

где $X^{2}=X^{2} p_{3 / 2} d_{5 / 2}, \mathrm{X}_{3}^{2}=X^{2} f_{72} d_{5 / 2}+X^{2} f_{7 / 2} d_{5 / 2}$, для нерехода $1 d_{s / 2} \rightarrow 1 / \int 2 p \quad$ и $X_{1}^{2}=X^{2} p_{3 / 2} d_{3 / 2}+X^{2} \mathrm{p}_{1 / 2} d_{3 / 2}, \quad X_{3}^{2}=X f_{5 / 2} d_{32}$ для перехода $l d_{3 / 2} \rightarrow 1 / 2 p, P_{1}$ и P_{3}-проницаемости барьери для нуклонов с орбитальными моментами \mid и 3.

Величина отношения (24) зависит от степени смепивания по орбитатьному моменту, т.е. от соотнонения коэффициентов X^{2}, и $X_{3}{ }_{3}$ вволновой функции как $\mathrm{T}_{\text {, }}$, так и $\mathrm{T}_{>}$состояния. В расчстах степень смсшивания по орбитальному моменту гри распаде каждого из этих состояний на уровни $\left(1 d_{3, j}\right)^{-1}$ и $\left(1 d_{3 / 2}\right)^{-1}$ варьировалась независимо с помощью параметри $b=X_{3} /\left(X_{1}+X_{3}\right)$, т.е. нспользовминсь два параметра $-b_{x}$ и b_{3}. При этом полагалось, что $X_{1},\left(T_{v}\right)+X_{3}{ }_{3}($ $\left.T_{y}\right)=X^{2},\left(T_{)}\right)+X_{3}^{2}\left(T_{)}\right)$. Эго условие очевидно для дипольных состояний, в волноной функции которых доминируюот частично-дырочные конфигурации $\left(1 d_{3,7}\right)^{-1}(l f 2 p)^{-1}$ и $\left(1 d_{3,2}\right)^{-1}(1 / 2 p)^{-1}$. При распадс дипольньх конфинураций, формирующихся за счет переходов из подоболчки $2 s_{1 / 2}$ в оболочку $1 f 2 p$ очевидно могут вылетать нуклоны только с единственным значснием орбитального момента.

Расчет $\quad \sigma_{p h}^{\text {int }}(\gamma, \infty)$ дия ядра $P^{\prime \prime}$ проводился, также как и дяя ядра S^{32}, с помощью программы "GAMMA" комплекса прогримм для обриботки результатов ($\gamma, X \gamma^{\prime}$)-экспериментов. Предварительно были выбраны опорныс парциальные сечения. С цељю уменьшения неопределенности в оценках для каждого типа дырочного состояния конечных ядер выбрано своё опорное сечение. Такими сечениями являлись сечения зиселения основного состояния ядра $S^{3 \prime \prime \prime}\left(\sigma^{m \prime \prime}\left(\gamma, p_{0}\right)=1.07\right.$ Мэвммб/ср), первого возбужденного состояния этого же ядра ($\sigma^{\text {bul }}\left(\gamma, p_{1}\right)=1.0$ Мэн.мб/ср), а также сечение заселения уровня с $i=3$ ядра
p^{30} (см. табл. 7 и 8). Считалось, что полупрямыс пропессы доминируют в этих сечениях. Действительно, болъшая часть спектроскопической силы дырки в подоболочках $2 \mathrm{~s}_{1 / 2}$ н $/ d_{\text {s/2 }}$ ядра $P^{\prime \prime}$, наблюдаемая в реакциях протонного подхвата (см. рис.29), содержится в основном в первом возбужденном состочниях ядра S_{i}^{30}. Эти состояния близки к протонным дыркам в подоболочках $2 s_{1 /}$ и $/ d_{5 / 2}$ относительно основного состояния ядра $p^{\prime \prime}$. Кроме того, болышие величины $\sigma^{\ln \prime \prime}\left(\gamma, p_{0}\right)$ и $\sigma^{\ln (}\left(\gamma, p_{2}\right)$ коррелируют с болыними величинами соответствуюших спектро-скопических факторов, что указываст на огределяющую роль полупрямых процессов в формировании этих сечений. $\sigma^{\sin }(\gamma, p$) использовалось для расчет полупрямых компонент сечений, формирующихся за счет примеси дырки в подоболочке $2 s_{1 月}, \sigma^{\text {in }}\left(\gamma, p_{\nu}\right)$ - для расчета полупрямьх прощессов за счёт примеси дырки в подоболочке $\int d_{3_{2}}$. Для оценки полупрямых процессов сечений, формирующихся за счёт примеси дырки в подоболочке $l d_{3 / 2}$ использовались $\sigma^{\min (}\left(y, n_{j}\right)$. Использовать $\sigma^{\text {int }}(\gamma, n)$ нли $\sigma^{\text {inn }}(\gamma, n$, в качестве оиорноюо сечений дия расчета полупрямой компонента сечений заселения уровней с дырочноі̆ конфигурацией $1 d_{3 / 2}$ нецелесообразно, так как дырочния конфитурания этих уровнеі̆ принадлежат двум подоболочкам - $1 d_{1 / 2}$ и $2 s_{12}$, ч70 увеличивает неопределенность в сцснках полупрямьљ компонснт. Считалось, что в формировинии сечения заселения уровня с $i=3$ ядра $P^{\text {fv }}$ также доминирует полупрямой механизм. Результаты рисчетов настоящей работы подтверждают правильность сделанных заключений.

Результаты расчетов $\sigma_{p l \prime}^{\text {III }}\left(\gamma, w_{0}\right)$ представлены в табл. 7 и 8. Для уровней, имеющих сравнимые вепичины S лля подоболочек $l d_{32}$ и $2 s_{1 / 2}$, были получены две оценки, отвечающие полупрямому распаду за счст присутствия каждой из этих дырочных комтонент в отдельности. В

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$

остальных случаях расчет проводился для доминируюющей дырочной компоненты.

Привсдённыс в табл. 7 и $8 \sigma_{p h}^{\text {int }}(\gamma, a)$) отвсчаст расчстным значениям $a=1, b>=1$ и $b<=0.6$ для уровней с дырочной конфигуржией приналлежащей $I d_{s / 2}$ и $I d_{3 / 2}$-подоболочкам. Для состояний, имсюцих примес, дырки в $2 s_{1 / 2}$ подоболочке $b_{<}=b_{3}=1$. При таких зничениях париметров a, $b_{<} \| b_{>}$достигастся наилучшес воспроизведснис наблюдаємых интегрильных парциальных фотонейтронных сечений для $\mathrm{T}=0$ уровней с энергиями: $1.45,2.54,2.72,3.02$, 3.83 и 4.42 M 3 В (см.табл.8), а гакже интегральнос сечсние заселения уровня 2.94 M ЭВ ($\mathrm{T}=1$) -изоюар-аналога первого возбужденного состояния в протонном канале. Отсюда следуют два вывода. Во-первнхх, при риспаде ДГР ялри $P^{3 / 1}$ с заселением дьгочньгх уровней в подоболочке $/ d_{g / 2}$ вылегалот преимущественно нуклоны с орбитальным моментом $l=3$. Во-вторыг, все перечисленные уровни нейтронного кинала распада заселяются преимушественно за счет полупрямых процессов. Величины $\sigma_{\text {ми }}^{\text {inf }}$ для уронней с $\mathrm{T}=1$ ядра P^{30} с энергиями 4.18 и 5.51 МэВ указывают на то, что в сечении их заселения доминируюот процессы распада, отличные от полупрямого мсханизмя. Приведенные в табл. 8 зничения $\sigma_{p h}^{i n}$ для трёх нижних уровней $(i=0,1,2)$ ядра $P^{\prime \prime \prime}$, можно рассматривать как оценки соотвстствующих интеюральных сечений заселения, поскольку в этих фтоонейтронных каналах должны доминировать полупрямые процессы.

Расчсты $\sigma_{p h}^{\text {inf }}$ для фотопротонного кинала показнли, что полупрямые процессы доминируют в сечениях заселения самых нижних уровнен с $i=0$ и 1 ядра Si^{30}. В сечениях заселения остальных состояний ядра $\mathrm{Si}^{3 \prime}$ вероятность полупрямого распада <1, причём с ростом энергии возбужиения консчноюо ядра она уменьшастся. Уровни с $i=3,4,5$, \&, 28 и группа уровней с $\mathrm{E}_{1} \geq 9.5 \mathrm{M}$ В ядра $\mathrm{Si}^{3 n}$, а

также уровни с $I=11,21,22,24$ ядра $P^{3 n}$ заселяются за счст статистических форм распада ДРР. Это следует из того, что для них S либо равны, либо близки к нулю.

Результаты свидетельствуют о том, что все уровни с $\mathrm{T}=0$, представленные в табл.8, и лежащие при энергиях $E \leq 4.42 \mathrm{M} 3$, как уже отмечалось вышс, ирактически целиокм заселяются за счет полупрямых процессов. В то же время уровни с $\mathrm{T}=()$, лежащие выше 4.42 M ВВ, имеют малуюо величину полупрямой компоненты, хотя некоторые из Іих, например, уровень с $i=28$ или 38 , имегот сравнительно большис значения спсктроскопческих факторов. Отсутствие распадов на такие уровни объясняется слишком высоким порогом таких распадов и сравнительно низкой энергисй распадаюинися состояний. Напомним, что в соответсвии с правилами ото́ора по ищоспину уровни с Т $=0$ могут заселяться лишь при распаде $\mathrm{T}_{\text {_ }}$-компоненты ДГР, центр тяжести которой в дннном случае располагиется при 18.3 МэВ.

Уровни с $T=1$ ядер i3 30 и ${ }^{P^{30}}$ засеняются лри расиаде как $T_{<}$, так и $\mathrm{T}_{>}$-компоненты ДГР. Эти уровни образуют изобараналоги. Данныенастоящейриботыпоказывают, чтохарактер засления изобар-аналоговнг уровней при фотораси!сплении ядер $P^{\prime \prime}$ во многом схож. Это иллюстрируется табл. 17. Видно, в частности, что основное и первос возбуждсннос состоянии ядри Si $^{3 n}$ и их изобир-аналоги в ядре $P^{3 n}$ заселяются целиком за счет полупрямых распадов. По мере увеличения энергии уровне с $T=1$ вероятность полупрямых расицов уменьшается почти одинаково как в фотопротонном, так и в фотонейтронном каналах (см.последннй столбец табл.17).

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

$\mathrm{J}=\mathbf{T}$	i	$\underset{(\mathrm{MJB})^{2}}{\mathbb{E}^{2}}$	S			$\sigma^{\text {faxd }}$	σ \%	$\sigma_{\mathrm{ph}} / \sigma^{\text {mama }}$
			$1 d_{52}$	2s ${ }_{1 / 2}$	$\mathbf{1 d}_{32}$	M)8, мб/cp		
$0^{+}, 1$	0 1	$\begin{gathered} 0 \\ 0.68 \\ \hline \end{gathered}$		$\begin{aligned} & 0.75 \\ & 0.74 \end{aligned}$		$\begin{gathered} 1.07 \\ (1.54)^{6} \end{gathered}$	$\begin{aligned} & 1.07 \\ & 1.54 \end{aligned}$	$\begin{gathered} 1 \\ \text { (1) } \end{gathered}$
$2{ }^{+}, 1$	1 8 2	$\begin{array}{r} 2.24 \\ 2.94 \\ \hline \end{array}$	2.6 2.0			$\begin{aligned} & 0.98 \\ & 0.66 \\ & \hline \end{aligned}$	$\stackrel{1}{0.57}$	1
$2^{+}, 1$	2 15 3	$\begin{array}{r} 3.50 \\ 4.18 \\ \hline 3.77 \end{array}$	$\begin{gathered} 0.8 \\ 0.76 \end{gathered}$			$\begin{aligned} & 0.77 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.23 \end{aligned}$
$1^{+}, 1$	3 22 4	$\begin{aligned} & 3.77 \\ & 4.50 \end{aligned}$			0.01	$\begin{gathered} 1 \\ 0.28 \end{gathered}$	0 0	$\begin{gathered} 0.29 \\ \hline 0 \\ 0 \end{gathered}$
$0^{1}, 1$	4 21 5	$\begin{aligned} & 3.79 \\ & 4.47 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.06 \\ & 0.06 \end{aligned}$			$\begin{aligned} & 0.06 \\ & 0.08 \end{aligned}$	
2', 1	$\begin{aligned} & 5 \\ & 32 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 5.59 \end{aligned}$			0.01	1.5	0 0	0
$\frac{3+1}{\text { м }}$ (1	6 31	4.83 5.51	$\begin{aligned} & 0.25 \\ & 0.32 \end{aligned}$			$\begin{aligned} & 0.88 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.07 \end{aligned}$

Дадим оценку интегральной вероятности полупрямых распадов в полном фотопротонном и фотонейтронном сечениях ядра P^{31}.Этавероятность определястся выраженисм $\Sigma_{i} \sigma_{\text {ph }}^{\text {in }}\left(\gamma, x_{i}\right) / \Sigma_{i} \sigma^{\text {in }}\left(\gamma, x_{i}\right)$

Данные табл. 7 указывают на то, что сумма интегральных паргиальньтх сечений зассления уровнсй ядра $\mathrm{Si}^{30} \mathrm{C}$ положительной четностып (также сечения формируются за счет переходов из внсшней Id 2 s -оболочки) составляет по крайней мере 40% всего фотопротонного сечения, которое по даныым настоящей работы равно 314 ± 40 МэВ.мб. Оценивая дошо полупрямых процессов по перечисленным в табл. 7 уровням положительной четности получвем, что она для переходов из Id2s-оболочки составляет примерно ~ 0.28. Это верхняя оценка. Отсюда (делением на $\left.\sum_{i} \sigma^{\text {mn }}\left(\gamma, p_{i}\right)\right)$ получаем также и нижною оценку доли полупрямьх процсссов в полном фотопротонном сечении примерно ~ 0.12. Из данных табл. 8 нидно, что все наблюдаемые сечения заселения состояний конечного ядра P^{31} формируются за счет переходон $1 \mathrm{~d} 2 \mathrm{~s} \rightarrow 1 \mathrm{f} 2 \mathrm{p}$. Сумма интегральных парииальных сечений, приведенных в табл.8, полностыо исчерпывает интегральную величину полного фотонейтронного сечения, равную по данным настоящей работы 225 ± 35 МэВ.мб. Оценка вероятиости полупрямого распада в фотонейтронном канаие даёт величину 0.9-0.95. Следует отметить, что возбуждение высоколежащих ($\mathrm{E}_{\mathrm{i}}>6 \mathrm{M}$ В) уровней конечного ядра P^{30} снимается гливным об́разом за счет испускания протонов (энергия отделения протона в ядре P^{30} составляет 5.6 M В). Это приводит к заселению отдельных состояний конечного ядра ${ }^{29} \mathrm{Si}$ в результате ($\gamma, \mathrm{np}_{\mathrm{i}}$)-процессов на ядре $\mathrm{p}^{\prime \prime}$, Интегральная величина таких процессов, составляощая $50 \mathrm{MэВ.мб} \mathrm{согласно} \mathrm{[8]}$, давать вклад н величину полного сечения фотонейтронного расщепления ядра P^{31}. Таким образом, если учитывать

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЈОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S^{32}

вклад ($\left(, n p_{i}\right.$)-реакций, то для вероятности полупрямых процессов в фотонейтронном канале распада ДГР ядра рз будем иметь значснис $0.74-0.78$.

Выше мы сравнивали оболочечнуюо структуру и спектроскопичсскис характеристики дырочных возбуждений (см.§1. гл.III) нечетного ядра P^{31} и четночетного самсопряженного ядра S^{32}. Было отмечено, что различия в оболочсчноі̆ структуре основных состояниі̆ ядер P^{31} и S^{32} во многом определяют и рпзличия в механизмах и характере распада ДГР этих ядер. Данныі̆ вывод, безусловно, касается и механизма полупрямого ріспада ДГР.

Рсзультаты, получснные в прсдыдуших двух параграфпх, позволяют сравнинать особенности полупрямого механнзма реакциї в фотопротонном и фотонсйтронном канилах распщй ДГР ядяер ${ }^{31}$ и S^{32}. Оценки вероятностей полупрямых процессов в полных фотонуклонных сечениях ядер ${ }^{31}$ и S^{32} приведены в табл. 18.

Вероятности полупрямых пронессов ($y, p),(y, n)+(y, n p)$ и фоторжсщеплсния для ядор $\beta^{\prime \prime} п S^{\prime \prime}$

рсакыни	sapo ${ }^{31}$	ядро ${ }^{32}$
(y, p)	0.12-0.28	0.31-0.50
$(\gamma, n)+(y, n p)$	0.74-0.78	0.74-0.79
(\%,110ill)	$0.41-0.51$	0.35-0.54

Таблнца 18.
Прежде всего, сравним соотношение вероятностей полупрямого распада в протонном и нейтронном кнналах для каждого из анализируемых ядер. Из данных табл. 18 видно, чтю как для ядра P^{31}, так и дия ядра S^{32} всроятность полупрямых процессов в фотонейтроином канале вьше, чем в фотопротонном. Для ядра S^{32} это объясняется тем,

что нейтронный порог значительно выше протонного $\left(\mathrm{B}_{\mathrm{n}}=15.04 \mathrm{M}\right.$ МВ против $\mathrm{B}_{\mathrm{p}}=8.86 \mathrm{M} 3 \mathrm{~B}$). В силу этого происходит подавление заселения высоколежащих уровней конечного ядра S^{31}. Как показали результаты, полученные в §2 настоящцй главы, вероятность полупрямых процессов в сечсниях заселения именно таких высоколежащих состояний ядра S^{31} оказалась наименьшей.

В случае ядра $P^{3 /}$, существенно более высокая вероятность полупрямьг процессов в нейтронном канале по сравненнюо с протонным, в основном, связана с тем, что основняя часть (примерно 80%) нейтронъьх распадов идет на уровни с $T=0$, которые заселяются почти целиком за счст эмисси полупрямых нейтронов. Доминируюшая роль полупрямьх процессов в сечении фотонейтронной реакции $(\gamma, n)_{\text {т-0 }}$ в свою очередь обусловлена более низким положенисм по энергии $\mathrm{T}_{\text {г }}$-состояний ДГР ядра ${ }^{\text {II }}$, относительно Т, -состояний. Как уже отмечалось выше, согласно правилам отбора по изоспину уровни с $\mathrm{T}=0$ конечного ядра $P^{\text {(1) }}$ могут заселяться лишь при распаде $\mathrm{T}_{<}$-встви. Центр тяжести $\mathrm{T}_{<}$-состояний лсжит ниже максимума ДГР. В этой области плотность $2 p 2 h$-состояний, по которым могут разбрасываться входные $1 p / h$-состояния, ещё сравнительно мала и состояния ДГР распадаются почти исключнาельно за счст эмиссии полупрямых нушьонов. В то же время фотопротонные распады идут на уровни с $T=1$. Заселение такьх уровней происходит в основном за счет распада $\mathrm{T}_{\text {, }}$-компоненты, центр тяжести которой расположен на несколько МэВ выше, чем центр тяжести $\mathrm{T}_{\text {, }}$-ветви. В этой области энергий возбуждения ядра $P^{\prime \prime}$ Іллотность $2 p 2 /-$ дипольных состояний уже значительно выше. Это приводит к заметной вероятности разброса входннгх $/ p / h$-состояний с $\mathrm{T}_{>}=3 / 2$ по состояниям $2 p 2 \mathrm{~h}$.

Дополнителыым факгором, обуславливающщим доминирование вероятности полупрямой эмиссии фотонейтронов, является разница в порогих (γ, p) и (γ, n)реакций для ядра P^{31}.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{33}$

Различе в характере механизма полупрямого риспада дипольных состояний ядер $P^{3 /}$ и S^{32} приовляется также и в парциальных каналах фоторасщепления анализуремых ядер. Так для ядра $S^{\prime 2}$ (см. табл. 9 и 10) полупрямые процессы приводят к заселению, главным образом, самых нижних уровней консчных ядер $P^{3 /}$ и S^{32}. В то жс время, характерной чертой полупрямого распида ДГР ядра ${ }^{2 \prime \prime}$ (см. табл. 7 и 8) является то, что наряду с заселением смых нижних уровней консчньгх ядер $\mathrm{Si}^{3 / 1}$ и $P^{3 \prime \prime}$ за счсю эмиссии полупрямьх нуклонов, наблюдается заметное заселение и более высоких по энергии возбужденных уровней конечных ядер. Действительно, полупрямыс процсссы ньрают важную роль в формировании сечений заселения таких возбужденных уровней ядра Si^{30}, как $E_{i}=3.50,5.23$ н 5.37 МэВ. Кроме того, эмиссия полупрямых нейтронов яணнстся определяющей в формировании сечений заселения таких возбужденных состояниі ядра $P^{\prime \prime \prime}$, как $E_{i}=1.45,2.54,2.72$, $2.94,3.02,3.83$ и 4.42 МэВ. Ғолес того, выясняется, что полупрямой распад ДГР нечетно-четного ядра ${ }^{\prime \prime}$ приводит к заселению большего числа состоянин конечных ядер, чем полупрямой распад ДГР четно-четного самосопряженного ядра ρ^{12}. Такая особенность мехянизма полупрямьх процессов фоторасщепления ядра $P^{\prime \prime}$, очевидно, связана с тем, что в данном ядре, в отличие от ядра S^{32}, дыропные возбуждеाия $\mid 1 d_{s / 2}>^{-1}$ (см.§1, гл.III) более сильно разбросаны по состояниям консчных ядер.

Данные табл. 18 свидетельствуют о том, что вероятность полупрямьх процессов в фотопротонном канале распада ДГР ядра S^{32} выше, чем в аналогичном канале распада ДГР ядра P^{31}. Вместе с тем, доля полупрямьхх процессов в фотонейиронньх каналах распада ДГР обоих исследуемых ядер оказывастся одинаковой. Вкладынолупрммых процессов в формирование сечений реакций (γ, полн) ядер P^{33} и S^{32} также являются сравнимыми. Концепция оболочечной

структуры ядер позволяет объяснитъ такос соотношенис между вероятностями полупрямых процессов в распаде ДТР исслсдусмых ядер. Ядра $P^{3 /}$ и S^{32} имсют одинаковос число нейтронов - 16 , которые спирены между собой. В то же время, согласно модели оболочек, неспаренным нуклоном во внсшнсй объолочке нсчстно-четного яцра $P^{3 \prime}$ оказывается протон. Наличие неспаренного протона во внешней оболочке
 входных $/ p / h$-дипольных состояний на состояния болес сложного типа - $2 p 2 h, 3 p 3 h \ldots$... Причём, это в наиобольшей степени должно отразиться на соотношении вероятностей нолупрямых процессов именно фотопротонных каналов распада ДГР ядер $P^{3 /}$ и S^{32}. Такая особенность соотношения вероятностей полупрямых процессов в фотопротонных каналах соседних ядер $P^{3 /}$ н S^{32} характерна и јияя других пар нечетно-четных и четно-четных ядер $/ d 2 s$-оболочки [6,75,92]. Это хорошо видно из рис.39. На этом рисунке сравниваются вероятности полупрямьтх происесов в фотопротонном канале распвда ДГР (подчеркнем, что речь идет о дипольных состояниях, отвечакщих переходам $I d 2 s \rightarrow 1 f 2 p$) ряда ядер $1 d 2$ м-оболочки (верхний рисунок) с соответствуюшими ширинами сечений, обусловленныхх переходами нуклонов из внешней незаполненной оболочки (нижний рисунок). Рис. 39 указываст также на то, что уменьшение доли полупрямых процессов в фотопротонном канале распщд ДГР ядра $P^{\prime \prime}$ относительно S^{32} коррелирует с увеличением соответствующей ширины. Таким образом, можно сделать вывод, что одним из основных факторов, определяюших увеличснис ширины ДГР ядра $P^{\prime \prime}$, являстся увеличение вероятности растада входных $/ p / h$-состояний на состояния более сложной природы - приһ ($n \geq 2$).

Существснное умсньшсние всроятности полупрямых распадов в фотопротонном канале у ядра $P^{2 /}$ по сравнению с четно четным ядром $S^{\prime 2}$, по-видимомум, также можно

объяснитъ и значительным увлсичением у ядра $P^{3 /}$ в плотности $2 p 2 h$-состояний, на которые может распадаться дипольнос состоянис.

 соотаететпуюних сечсний - Іижни! рисунок.

Рассмотрим природу ширин ДГР ядер P^{31} и S^{32}. Для ядер $1 \mathrm{~d} 2 \varsigma-0 б о л о ч к и ~ ш и р и н а ~ Д Г Р ~ м о ж е т ~ м е н я т ь с я ~ в ~ о ч е н ь ~$ широких пределах, приблизительно от 5 до 20 M В [1], а её формированне обусловлено следуощим факторами:

Разброс по энсргни дипольных переходов из одной оболочки;

Конфигурационное расщепление;
Изоспиновое расццпление;
Расщепление за счет статической деформации ядра в основНОМ состоянии.

Вклад каждого из перечнсленньх факторов в формирование ширины ДГР ядер $\mathrm{P}^{\prime \prime} \mathrm{K}^{32}$ приведен в табл.19. Сведения об эксперимснтальньх ширинах ДГР исследуемьх ядер приведены во втором слева столбце

табл.19. Для ядра S^{32} эти свсдения получсны из анализа сечения фотопоглощения, представленноо на рис.7(а) [21], а цля ядра ${ }^{31}$ исгольззовались сумма фотонсйтрноото и фотопронного сечений (рис. 2 и 4 [8,10]). Для ядра P"!, ввиду отсутствия достаточно полных экспериментальных данннгх по энергстическим зависимостям парเиальных нуклонных сечений, в табл. 19 приведены лишь оценки ширин разброса дипольных переходов из олной оболочки. Они находятся в согласии с аналогичными оценкими для других нечетно-четных ядер 1 d 2 s -оболочки. Так, согласио данным работы [1] разброс дииольных переходов из внешней оболючки для ядер ${ }^{2.3} \mathrm{Na}$ и ${ }^{27} \mathrm{Al}$ составляет 5.9 ± 0.5 и 6.2 ± 0.5 МэВ соответственно, а величина разороса переходов из внутренней оболочки ядра ${ }^{27} \mathrm{Al}$ равна 7 M МВ.

ядро	ІІІрніни дгі	Разпрос динолlыlых пepexainor		Kollфигу= pailmolline paciuen.teunu ($\mathrm{E}, \geq 30 \mathrm{M} 3 \mathrm{H}$)	Biso-cinhenuas pacinen-telite
		H3 внешнеи иболочки	H ниутроиней и00:Tuษки		
Pus	10-10.5	6-7	300	$3-4$	3
S^{12}	8.5+1.5	5.5 ± 0.5	4-1	2.9	0

Tuantial 19.
В табл. 19 не приведены величины расщепления ДГР за счет деформации ядра в основном состоянии. Как было показано в эксперимснтильньхх исследованиях дипольного резонанса ядер 1 d 2 s -оболочки и в теоретических работах [$1,4,43$] статическая деформания ядра в основном состоянии не оказывает определяющего воздействия на ширину дипольного резонанса, а также его общуюо форму. Значительно более существенным в этом нинне оказывастся влияние остальных факторов, обуславливающих ширину ДГР.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И \mathbf{S}^{32}

Дсйствительно, из табл. 19 видно, что для ядра S^{32} разброс дипольных переходов, составляющий около 5 МэВ, является важнымфактором формирования ширины ДГР.Изоспиновос расщепление для данного ядра отсутсвует. Увеличение ширины для ядра S^{32}. до экспериментально наблюдаемого значсния $8.5 \pm 1.5 \mathrm{M}$ ВВ обсуловлсно конфигурацционным расщеплением, величина которого достигает примерно 3 МэВ (рассматривастся областъ энсргий возбуждсния иижс 30 M 3 B).

У ядра P^{31} ширина сечения переходов из внешней оболчки составлнет 6-7 МэВ, что несколыко больше аналогичной величины для соседнего ядра S^{32}. Причиной этого, как было показано выше, может служить уменьшенне доли полупрямьх процессов в ДГР ядра ${ }^{31}$. На ширину ДГР ядра P^{31} более сильное влияние оказывает конфитурационное и изоспиновое расшепление. Величина последнсгосоставляет 3 M ВВ. С учетом конфигурационного и изоспинового расщеплений ширина для ядра P^{31} достигает значения 10 10.5 M 3 B .

ЗАК. JIOYIEHИE

Подвсдем итоги. Проанализированные данныс $\left(\gamma, \mathrm{X} \gamma\right.$ ')-экспериментов на примере двух ядер ${ }^{\prime \prime} \mathrm{P}$ и ${ }^{32} \mathrm{~S}$ показывают, что этот метод исследования высоковозбужденных состояний, в частности ДГР, является весьма эффективным. Несмотря на определенные сложности в обработке и интерпретации γ-спектров, он позволяет получать детальную информацию о механизме фотоядерных проиессов и о роли нуклонов различных оболочек в формировании высоколежащих коллективных возбуждений. Данный метод исследования особенно информативен в сочстании с экспериментами по спектрометрированию частиц.

В последующих экспериментах предстивляет интерес измерение угловых расиределений фотонуклонов в парциальных переходах. Знание величины углового момента позволит с большей определенностыо проводить обработку экспериментальных данных. Поэтому качество интерпретации данных с каждым исследованием возрастет, что будет способствовать эффективному продолжению изучсния парциальных фотоядерных переходов для многих ядер 1 d 2 s -оболочки [102-113]. Но даже в отсутствие сведений об угловых распределениях реализация программы для всей оболочки, аналогичная проводенной в данной работс для ядер ${ }^{31} \mathrm{P}$ и ${ }^{32}$, позволит глубже продвинутъся в понимании природы ДГР в легких ядрах.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР \mathbf{P}^{31} И S ${ }^{32}$

Прсдставляется важным увеличсние точности измерения парциальных переходов на дырочные уровни внешней оболочки и измерение зависимости сечения от энергии падаюпих на ядро-мищень фотонов. Это позволит четче зафиксировать селективность распада из разных областей гигантского резонанса на различные дырочные состояния. Это и есть конфигурационное расщепление диполыных переходов нуклонов внутри полосы, связанной с внсшними нуклонами.

Весьма важным направлснием экспериментальных исследований должно стать получение парциальных фотонейтронных сечений и особенно их энергетических зависимостсй. Фотопротонный канал исследован нолнсе. Мы отметили в настоящей работе, что вероятность полупрямых процессов в фотонейтронном канале для ядра ${ }^{3}$ р сушествснно выше, чсм в фотопротонном. Это означнет, что фотонейтронная ветвь ДГР этих ядер лучше «помнит» о конфигурационной структуре входных дипольных состояний, чем фотопротонная.

При наличии всех перечисленных выше недостаюощих данных мы существенно продвинемся и расширим наши представления о гигантском резонансе в ядрах оболочки в иелом. Такая работа может быть проведени на современных сильноточных ускорителях. Продолжать исследования, конечно же, необходимо, так как дипольный гигантский резонанс, сначало предсказанный, а затем и открытый чуть больше 75 лет тому назад, продолжает оставаться богатым по своему физическому содсржанию и способствует чрезвычайно плодотворному развитию ядерной физики и ряда смежных областей.

ЛИТЕРАТУРА

1. Eramzhyan R.A., Ishkhanov B.S., Kapitonov I.M. and Neudatchin V.G. The giant dipole resonance in light nuclei and related phenomena.-Physics Reports, V.136, n. 4-6 (1986).
2. Ипханов Б.С., Капитонов И.М., Неудачин В.Г., Эрамжяя Р.А. Конфигурационнос расщепление липольного гигантского резонанса у ядер (2s-2d)-оболочки.- ЭЧАЯ, 14 (1983), 286-328.
3. Ишханов Б.С., Капитоноп И.М. Явление конфигурационного расщепления дипольного гигантского резонанса ядер 2s2d-оболочки. Письма в ЖЭТФ, 1985, т.42, с.465-466.
4. Ishkhanov B.S., Kanzyuba V.G., Kapitonov I.M., Orlin V.N., Shvedunov V.I. A semimicroscopic calculation of the photodisintegration of the ${ }^{32}$ S nuclelis. -Nucl.Phys., A405 (1983), $287-$ 300.
5. Капитонов И.М. Гигантекий дипольный резонанс ядер s-d ойолочки.- Дисс...докт.физ.-мат.наук, НИИSIФ МГУ, Москва, 1983.
6. Арзнбоков У.Р., Габелко А.С., Жалилов М.Х., Иргашев К.М., Ишханов Б.С., Капитонов И.М., Орлин В.Н., Пискарев И.М. Анализ парцильных фотонуклонных сечений на основе ширин полупрямого распада коллсктивного дипольного состояния.-Ядерная физика, 42(1985), 1059-1072. 7. Ишханов Б.С., Капитонов И.М., Лазутин Е.В., Пискарев И.М., ІІевченко В.Г. Сечение реакции (γ, n) на 山юминии и фосфоре.- Изв. АН СССР, сер.физ., 33 (1969) 1742-1746. 8. Veyssierc A., Beil H., Bergere R., Carlos P., Lepretre A., Miniac A. A study of the photoneutron contribution to the giant dipole resonance of the shell nuclei. -Nucl.Phys., A 227 (1974), 513-540.
7. Anderson D.W., Petry R.F., Fischbeck H.J. Production of neutrons from phosphorus by high-energy bremsstrahlung.Radiat.Res., 50 (1972) 33-40.
8. Ishkhunov B.S., Kapitonov I.M., Shevehenko V.G., Yurev B.A. (γ, p) cross section for Mg, P end S.- Phys.Lett., 2

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S ${ }^{32}$

(1964)162-164.

11. Kawamura N., Tsubota H. et al. Resoarch Report of Laboratory Nuclear Sience.Tohoku University, 4, Nu2 (1972) 42.
12. Abe K., Kawamuru N., Mutsuro N. Photoproton spectra from "P.-J.Phys.Soc.Japan, 25 (1968) 1725.
13. Tsubota H., Kawamura N., Oikawa S., Sugawara N., Shoda K. Photoprotons in giunt resonance region for ${ }^{31}$ P.- J.Phys.Soc. Japan, 35 (1973) 330-336.
14. Gellie R.W., Lokan K.H., Shermann N.K. Photodisintegration of phosphorus.- Intern.Conf. on Photonuclear Reactions and Applications. Asilomar, 1973. Summaries of contribudet papers, p.2B13-1-2B13-2.
15. Kerkhove E., Ferdinande H., Van Otten P., Ryckbouch D., Van de Vyver R., Berkvens P., Van Camp E. Photoproton decay of the ${ }^{31}$ P giant resonance.- Phys.Rev., C31 (1985) 1071-1082. 16. Fallieros S., Goulard B. Isovector excitation in nuclei.Nucl.Phys., Al47 (1970) 593-600.
16. Akruzz R.O., Fullieros S. Energy displacement of dipole isodoublets.- Phys.Rev.Letl., 27 (1971) 1016-1018.
17. Thomas B.J., Buchnea A., Irish J.D., McNeil K.G. Reactions ${ }^{19} F\left(\gamma, X \gamma\right.$ ') and ${ }^{31} P(\gamma, X \gamma$ ').- Can.J.Phys., 50 (1972) 30853089.
18. Zalcman L., Thomson J.E.M., Thompaon M.N. De-excitation γ-rays following photodisintegration of ${ }^{31} \mathrm{P}$.- Intern.Conf. on Photonuclear and Applications. Asilomar, 1973. Summaries of contributed papers, p.2B12-1-2B12-2.
19. Cumeron C.P., Ledford R.D., Potokar M., Rickel D.G., Roberson N.R., Weller H.R., Tilley D.R. Polorized proton capture on ${ }^{3 n}$ Si.-Phys.Rev., C22 (1980) 397-407.
20. Wyckoff I.M., Ziegel B., Kech H.V., Uhlig R. Total Photonuclear Cross Sections for Low Atomic Number Elements.Phys.Rev., 137B (1965) 576-594.
21. Долбилкин Б.С., Исаков А.И., Корин В.И., Лаэирева Л.Е., Николаев Ф.А. Сечение поглощения γ-лучсй ядрами серы в области дипольного гигантского резонянса.תдерния физика, $\underline{8}$ (1968) 1080-1085.
22. Варламов В.В., Ишханов Б.С., Капитонов И.М.,

Кочарова Ж.Л., Швсдунов В.И., Исследованне протонного канала распада гигантского резонанса ядра ${ }^{32}$. - Ядерная физика, 28 (978) 590-603.
24. Горячен Б.И., Ишханов Б.С., Шевченко В.Г., Юрьев Б.А. Структура сечений ($\%, \mathrm{n}$)-реакций ни мпрах $\mathrm{Si}^{28}, \mathrm{~S}^{32}$ и Ca^{40}.- Ядсрная физика, 7 (1968) 1168-1180.
25. Shoda K., Abe K., Ishizuka T., Kawanura N., Kimura M. Energy spectra of photoprotons from P^{31} and Ca^{40}. J. Phys.Soc. Japan, 17 (1962) 401-402.
26. Webb D.V., Spicer B.M., Arenhövel H. Sulfur photoneutron cross section.- Phys.Rev., 164 (1967) 1397-1389.
27. Anderson D.W., Bureau A.J., Cook B.C., Englert T.J., Schramm R.E. Photoncutron cross sections for ${ }^{32}$ S.- Nucl. Phys., A150 (1970) 74-82.
28. Bramanis E. An investigation of the (γ, np) reaction in ${ }^{40} \mathrm{Ca}$ and ${ }^{32}$ S.- Nucl.Phys., Al75 (1971) 17-30.
29. Dearnaley G., Gemmel D.S., Hooton B., Jonen G.A. Fine intructure of the gitut resonance in the reaction $P^{31}(p, \gamma) S^{32}$.Nucl.Phys., 64 (1965) 177-196.
30. Kinura M., Shoda K,, Mutsuro N., Sugawara., Abc K., Kegeyuma K., Mishinu M. Ono A., Iehizuka T., Mori S., Kawamura K., Nakagawa T., Tanaka E. Structure of giant renonance in the $P^{31}(p, y)$ reaction.- J.Phys.Soc.Japan, 18 (1963) 477-482.
31. Wu C.P., Firk F.W.K., Phillipe T.W. A Study of the giant dipole states of the ${ }^{28} \mathrm{Si}$, and ${ }^{+0} \mathrm{Ca}$.- Nucl.Phys., 1147 (1970) 19-32.
32. Lokan K.H., Sheman N.K., Gellie R.W., Jury J.W., Lodge J.I., Johnson R.G. Photoneutron cross sections in ${ }^{3}$ S. - Intern. Conf. on Photonuclear Reactions and Applications. Asilomar 1973. Summaries of contributed papers, p.2B14-1-2B4-2.
33. Shoda Kı, Abe K., Ishizuka T., Kawamuru N., Oyamoda M. Photoprotons from ${ }^{23} \mathrm{Na},{ }^{31} \mathrm{P},{ }^{32} \mathrm{~S},{ }^{40} \mathrm{Ca},{ }^{55} \mathrm{Mn}$ and ${ }^{55} \mathrm{Fc}$.- J. Phys. Soc.Japan, 25 (1968) 664-674.
34. Ишханов Б.С., Капитонов И.М., Шсвченко В.Г., Юрьев Б.А. Фотопротоны из серы.- Ядерная физнка, 4 (1966) 765 769.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНА.ТОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S ${ }^{32}$

35. Courant E.D. Direct Photodisintegration Processes in Nu-clei.-Phys.Rev., 82 (1951) 703-709.
36. Варламов В.В., Ишханов Б.С., Капитонов И.М., Кочарова Ж.Л., Ориин В.Н., Шведунов В.И. Исследонание распилных свойств гигансткого динольного резонанса ядри ${ }^{32}$ S.- Изв. АН СССР, сер.физ., 42 (1978) 153-158.
37. Ииханов Б.С., Капитонов И.М., Лазутин Е.В., Пискарев И.М., Сопов В.С., Шевчснко В.Г. Рсакции $\mathrm{S}^{32}(\gamma, \mathrm{p} \gamma)$) $S^{32}(\gamma, n \gamma>)$.- Ядерная физика, 12 (1970) 224-226.
38. Thompson M.N., Stewart R.J.J., Thomson J.E. De-exciation γ-rays following photodisintegration of ${ }^{14} \mathrm{~N}$ and ${ }^{32} \mathrm{~S}$.Phys.Lett., 31B (1970) 211-213.
39. Thomson J.E.M., Thompson M.N., Stewart R.J.J. Cross sections for photodisintegration or ${ }^{32} S$ to excited residual states.- Nucl.phys., A290 (1977) 14-26.
40. Drechsel D., Seaborn J.B., Greiner W. Collective correlations in apherical nuclei and the stracture of giant resonance.Phys.Rev., 162 (1967) 963-991.
41. Mujling I., Rizok J., Bely Y.I., Neuduchin V.G., Yudin H.P. On the structure of giant dipole renosance in ${ }^{32} \mathrm{~S}$. - Nucl. Phys., A143 (1970) 429-448.
42. Farris S.A., Einsenberg J.M. Particle-hole description of ${ }^{28}$ Si and ${ }^{32}$ S.- Nucl.Phys., 88 (1966) 241-256.
43. Wong S.S.M., Rowe D.J., Parikh J.C. Calculations of the giant dipole resonance for sd-shell nuclei in the open-shell random phane approximution.- Phys.Lett., 48B (1973) 403-406.
44. Spicer B.M. Electric dipole photonabsorption in ${ }^{32}$ S. -Auatral.J.Phys., 18 (1966) 1-6.
45. Lichtblau H., Spicer B.M. Energy spectra of photoprotonas from aluminium, sulphur and silicon.- Auatral.J.Phys., 19 (1966) 297-307.
46. Hill L.L., Überall H. Inelastic electron scattering in ${ }^{32}$ S.Phys.Lett., 24B (1967) 364-366.
47. Guryachev B.I., Majling I., Neudatelin V.G., Yuryev B.A. The configurational splitting of the dipole giant resonance for the nori-magic nuclei of the $1 \mathrm{~d}-2 \mathrm{~s}$ shell as demonstrated by S^{32}.- Nucl.Phys., A93 (1967) 232-240.
48. Orlin V.N. A semimicroscopic model of nuclear vibrations with separable fores and giant dipole resonance of ${ }^{12} \mathrm{C}$.- Nucl. Phys., A405 (1983) 263-286.
49. Живописцев Ф.А., Ишханов Б.С., Орлин В.Н., Шведунов В.И. Комбинированное описание фотонуклоных спектрон, основанное на совместном использовании модели оболочек и модели предривновесного распада.- Ядерная физика, 26 (1977) 754-765.
50. Ishkhanov B.S., Kapitonov I.M., Orlin V.N., Shedunov V.I., Varlamov V.V. A combined model for decay of giant dipole resonance.- Nucl.Phys., A318 (1979) 413-440.
51. Джелепов Б.С., Шестопалова С.А. Ядерно-спектроскопические нормали. М., Атомиздат, 1980, 232 с.
52. Ulrish H., Krauth H. Photonuclear reaktions in ${ }^{40} \mathrm{Ca}$ and ${ }^{10} \mathrm{O}$ leading to excited states of residual nuclei.- Nucl.Phys., Al23 (1969) (641-648.
53. Horowitz Y.S., McConnel D.B., Seengabi J., Keller H. Anlgular distributions of de-excitation $\gamma-$ rays in ${ }^{19} \mathrm{H}$ and ${ }^{15} \mathrm{O}$ produced from particie decuys of the lo O gian resonunce.- Nucl. Phys., A151 (1970) 161-181.
54. Patrick B.H., Bowey E.M., Muirhead E.G. The photodisintegration of ${ }^{15} \mathrm{~N}$ through excited states of ${ }^{15} \mathrm{~N},{ }^{12} \mathrm{C}$ and ${ }^{14} \mathrm{C}$.J.Phus., G2 (1976) 751-767.
55. Berg U.E.P., Wolf H., Sohafer B., Wienhard K. Detection of promi deexcitation γ-rays following brennstrahlunginduced reactions with the aid of large volume $\mathrm{Ge}(\mathrm{Li})$ detectors.- Instruments and Methods, 129 (1975) 155-166.
56. Ajzederg-Selove F. Energy levels of light nuclei $A=13$-15.Nucl.Phys., A268 (1976) 1-204.
57. Пискарев И.М. Структура гигантского резонанса на легких ядрих. Дисс...канд.физ.-мат.наук. НИИЯФ МГУ, Москва, 1970.
58. Немеп О.Ф., Гофмин Ю.В. Справочиик по ядерной физикс.- Кисв, Науковя думка, 1976, 414 с.
59. Арзибеков У.Р., Габелко А.С., Жалилоп М.Х., Иргашев К.М., Капитонов И.М., Пискаров И.М. Комплекс программ для обрработки спектров гамма квантов сопровождюших

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

фотоядсрныс реакции Тезисы докладов XXXIV совсщания по ядсрной спектроскопни и структуре атомного ядра (Алма-Ата, 1984), Л., Наука, с. 404.
60. Zlokazov V. Activ - a program for automatic processing of gamma-ray spectra.- Camp. Physs.Comm., $\underline{28}$ (1982) 27-40. 61. Endt P.M., Van der Leun G. Energy levels of $A=21-44$ nuclei (VI).-Nucl.Phys., A310 (1978) 1-752.
62. Galdwell J.Th. Experimental investigation of practicular final-states decay modes following photoparticle reactions in ${ }^{16}$ O. (Ph.D.Thesis) University of California. UGRL-50287, 1967.
63. Пискаров И.М. Упругое и неупругое рассеяние фотонов на атомных ядрах.- Изв. АН СССР, сер.физ., 46 (1982) $72-$ 79.
64. Ишханов Б.С., Новиков Ю.А., Омаров Е.С., Пикаров И.М. Упругое и неупругое рассеяние фотонов на ядрах ${ }^{28} \mathrm{Si}$ и ${ }^{32} \mathrm{Cl}$:- Ядерная физика, 32 (1980) 1465-1475.
65. Демидон А.М. Говор Л.И., Черепанцен Ю.К. Ахмед M.Р., แль-Наджир С., เиьь-Амили М.А., аль-Ассафи Н., Раммо H . Атлас спектров гамма-квантоння от неупругого расссяния быстрых нсйтронов рсактора. М., Атомнздат, 1978, 328 c.
66. Kuhlmann E., Galaroo J.R., Cheng V.K.G., Mavis D.G., Hall J.R., Hanna S.S. E1 and E2 strength in ${ }^{32}$ S and ${ }^{34} \mathrm{~S}$ observed in α-capture reactions.- Phys.Rev, C20 (1979) 5-12.
67. End P.M. Spectroscopic factors for single-nucleon transfer in the $A=21-44$ region.- Atomic Data and Nuclear Data Tables, 12 (1977) 23-61.
68. Preuch J.B., Macfarlane M.H. Isobaric-spin splitting of sin-gle-particle resonances.- Nucl. Phys., 26 (1961) 168-176.
69. Wildenthal B.H., McGrory J.B., Halbert E.C., Graber H.D. Structure of nuclei with masses $A=30-35$, as calculated in the shell model.- Phys.Rev., C4 (1971) 1708-1758.
70. Ishkhanov B.S., Kapitonov I.M., Shumakov A.V. Systematics of the single-particle properties of the Id2s shell nu-clei.- Nucl.Phys., A394 (1983) 131-138.
71. Barker F.C., Mann A.K. The effect of isotopic spin impurity
on (γ, p) and (γ, n) cross sections.- Phil.Mag., v. 2 (1957) S-14. 72. Ишханов Б.С., Капитонов И.М., Шведунов В.И. Изобар-аналоговые состояния в фотоядерных реакциях. М., 1981, 88 c.
73. Ирганев К.М., Ишханов Б.С., Капитонов И.М. Парциильныс фотонуклонные сечения и липольнын гигантский резонснс ядра ${ }^{24} \mathrm{Mg}$.- Деп. ВИНИТИ, № 6125 1386, 1986, 35 c.
74. Габелко А.С. Аналия парциальных фотонуклонных сечений на основе ширин полупрямого распада дипольногп гигантского резонанса я, ри ${ }^{28} \mathrm{Si}$.- Изв. АН СССР, сер.физ., 51 (1987) 976-982.
75. Габелко А.С., Жалилов М.Х., Ишхханов Б.С., Капитонов И.М. Дипольный гигантский резонанс ядер с числом нейтронов $\mathrm{N}=20\left({ }^{(39} \mathrm{K} \mathrm{и}{ }^{40} \mathrm{C}\right.$) $)$ - Деп. ВИНИТИ, № 6142-1386, 1986, 51 c.
76. Thomsin J.E.M., Thompson M.N. Photoproton and pho-to- cross section of ${ }^{19} \mathrm{~F}$ to excited residual states.- Nucl. Phys., A 330 (1979) 66-76.
77. Ишханов Б.С., Мокеев В.И., Новикив Ю.А., Омарив Е.С., Пискарев И.М., Парлаг А.М., Гутий А.И. Рсакиия ${ }^{23} \mathrm{Na}\left(\gamma, \mathrm{X} \gamma^{\prime}\right)$.-Ядерная физнка, 32 (1980) 885-888.
78. Арзиб̈еков У.Р., Гап̈елко А.С., Жалилов М.Х., Иргашев К.М., Ишханов Б.С., Капитонов И.М., Пискарев И.М. Нуклонные риспада гигантекого дипольногэ резонанса ядра ${ }^{27}$ Al.- Ялерная физика, 40 (1984) 1121-1130.
79. Арзибеков У.Р., Габелко А.С., Жалилов М.Х., Иргашев К.М., Ишханов Б.С., Капитонов И.М., Пискарев И.М. Характеристики распада дипольного резонанся ядра ${ }^{39} \mathrm{~K}$.Изв. АН СССР сер.физ., 51 (1987) 134-139.
80. Lane A.M. Reduced width of individual nuclear energy lev-els.-Rev.Mod.Phys., 32 (1960) 519-566.
81. Rowe D.J., Wong S.S.M. The open-shell random-phase approximation and the negative parity exications of ${ }^{12} \mathrm{C}$.- Nucl. Phys., Al53 (1970) 561-585.
82. Thomson J.E.M., Thompson M.M. Photodisintegration of ${ }^{28} \mathrm{Si}$ to excited residual states.- Nucl.Phys., A2 $2 \underline{5}$ (1977) 84-92.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S ${ }^{32}$
83. Ryckbosch D., Ven Camp E., Van de Vyver R., Kerkhove E., Van Otten P., Berkvens P., Perdinende H. Photoproton decay of the ${ }^{45}$ Sc giant dipole resonance.- Phys.Rev., C26 (1982) 448-455.
84. Gulbrason R.L., Cardman L.S., Doron A., Frelle A., Lindfren K.R., Yavin A.I. Charged particle decay of the ${ }^{28}$ Si giant electric dipole resonance.- Phys.Rev., C2I (1983) 470-481.
85 . Tanner N.W. The structure of the giant dipole resonance.Nucl.Phys., $\underline{63}$ (1965) 383-392.
86. Singh P.P., Segel R.E., Meyer-Schutzmeister L., Hama S.S., Allas R.G. Giant resonances and fine structure in Si^{28} from $\mathrm{Al}^{27}(\mathrm{p}, \gamma) \mathrm{Si}^{28}$ reaction.- Nucl.Phys., 65 (1965) 577-601. 87. Segel R.E., Veger X., Meyer-Schutzmeister L., Singh P.P., Allas R.G. Radiative capture by ${ }^{19} \mathrm{~F}$: the giant dipole resesance in ${ }^{20} \mathrm{Ne}$.- Nucl. Phys., A23 (1967) 31-48.
88. Bearse R.C., Meyer-Schultzmeister L., Segel R.E. The ${ }^{23} \mathrm{Na}(p, \gamma){ }^{24} \mathrm{Mg}$ reaction and the giant dipule resonance region.Nucl.Phys., A116 (1968) 682-694.
89. Manon W.M., Tanner N.W., Kernel G. Mechunism of the ${ }^{31} P(p, y)^{33}$ S reaction in the giant dipole resonance region,- Nucl. Phys,, 1138 (1969) 253-272.
90. Diener E.M., Amann J.F., Panl P. Proton capture into the giant resonance of ${ }^{40} \mathrm{Ca}$ - Phys.Rev., C7 (1973) 695-704.
91. Канзюба В.Г. Полумикроскопическое описание фоторасщепления ядер ${ }^{28} \mathrm{Si}$ и ${ }^{32} \mathrm{~S}$.- Дисс...канд.физ.-мат. наук. Москва, НИИЯФ МГУ, 1983.
92. Гибелко А.С.,Иргашев К.М.,Ишхинов Б.С.,Капитонов И.М., ПТискарев И.М. Нуклонные ветви и полупрямой механизм распада гигантского резонанса яра ${ }^{23} \mathrm{Na}$.- Вестник МГУ, сер.3, физика, астрономия. 28 (1987) N1, 24-29.
93. Арзибеков У.Р., Габелко А.С., Жилилов М.Х., Иргашев К.М., Ишханов Б.С., Капитонов И.М., Хамраев Ф.Ш. Исследование распялных характеристик гигантского динольного розонанса ядра ${ }^{33}$ S методом ($\gamma, X y$) $)$-реакций.- Изв. АН УЗССР, сер.физ.-мат., вып.2, 1986, 52-58. $_{\text {, }}$
94. Арзибеков У.Р. Вероятность полупрямых процессов при распаде ДГР дра ${ }^{32}$ S.- Тезисы докладов XXXVI совещания

по ядерной спектроскопии и структуре атомного ядра (Харьков, 1986). Л., Наука, с. 358.
95. Арзибеков У.Р., Ишханов Б.С., Капитонов И.М., Пискарев И.М. Парциальные фотонуклонные сечения и вероятность полупрямых ироцессов в фоторисшепления ядра ${ }^{32}$ S.- Ядерная физика, 44 (1986) 1124-1133.
96. Арзибеков У.Р., Капитонов И.М. ($\gamma, \mathrm{X} \gamma^{\prime}$)- эксперимент для ядра ${ }^{3}$ Р.- Тсзисы докладов XXXVII совещания по ядернои спектроскопии и структуре атомного ядра (Юрмала, 1987). Л., Наука, с. 363.
97. Арзибеков У.Р., Иигханов Б.С., Капитонов И.М. Полупрямые компоненты паринальных и полных фотонуклонных сечснии ядра ${ }^{3}$ Р.- Тезисы докладов XXXVII совешания по ядернои спектроскопии и структуре атомного ядра (Юрмала, 1987). Л., Наука, с. 364.
98. Арзибеков У.Р., Габелко А.С., Жалилов М.Х., Иргашев К.М., Ишханов Б.С., Капитонов И.М. Парциальные каналы реакıии "Р $(\gamma, X \gamma)$). Я!церныя физика, 45 (1987) 907-909. 99. Арзибсков У.Р., Габенко А.С., Ишханон Б.С., Канитонон И.М., Пискарев И.М. Парьиальные фотонуклонные сечения и полупрямой механизм распада ДГР ядра ${ }^{31}$ Р.- Ядерная физика, 47 (1988) N4.
100. Arzibekov U.R., Gabelko A.S., Zhalilov M.H., Irgashev K.M., Ishkhanov B.S., Kapitonov I.M., Piskerev I.M., Khamraev F.Sh. International Nuclear Data File "Generalized EXPOR" Entry: MO 161.
101. Arzibukov U.R., Gabelko A.S., Zhalilov M.H., Irgashev K.M., Ishkhanov B.S., Kapitonov I.M. Intemational Nuclear Reaction Data File "Generalized EXPOR" Entry: MO 163. 102. М.Х.Жалилов. У.Р.Арзибеков К.У.Умаров. ($\gamma, \mathrm{X} \boldsymbol{\gamma}$ ')-реакцияси ердамида аралашма таркибидаги номаъуум моддани аниклаш. Физика ва физик таълимнинг замонавий муаммолыри. Республики конференьияси тсзислари. Сaмарканд, 2009 й. 102-103 0ст.
103. У.Р.Арзибеков, М.Х.Жалилов, М.Д.Дивронов, К.У.Умаров, Б.Н.Бурхонов, А.А.Усаров. Изоспиновые характеристики ДГР ядра ${ }^{39} \mathrm{~K}$ и конкуренция нуклонных каналов

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ФОТОРАСЩЕПЛЕНИЯ ЯДЕР Р ${ }^{31}$ И S ${ }^{32}$

сго фоторасщепления. Узб.физ.жури., 2009, Т.ІІ., №3, Ташкеит, 173-177 с.
104. У.Р.Арзибеков, М.Х.Жалилов, К.У.Умаров, З.Т.Ражамуродов, Н.О.Содиков, Х.Э.Махмудова, А.А.Усаров. ($\gamma, \mathrm{X} \gamma^{\prime}$)-фотоядро реикниялари нагижыларини тыибик этиш. Материалы конфсреннии «Фунламснтальные и прикладные вопросы физики» посвященной 80 -летию академика Саидопа М.С., Ташкеит, 2010, 24-25 поября 105. У.Р.Арзибеков, М.Х.Жалилов, Г.Д. Хамдамова. ($(, \mathrm{X}(\gamma)$)реакциялари тажрибылари учун нишон модданинг оптимал калинлигини аниклаш. Сборник научных статьей и тезисов республиканской конференции «Линтво-психо-педагогические аспекты и методы их применения в обучении», СамМИ, 2012, 68-69 с.
106. У.Р.Арзибеков. Особенность полупрямой стадии фотопротоиного распада дипольного гигантского резонанса для ядер $16<A<40$. Proceedings of Turin Polytechnic University in Tashkent. Print office: "ASR MATBUOT" Itd, Tashkent 2012, p. 55-58.
107. М.Х.Жалилов, Ж.Х.Химросв, М.Б.Каршисв. ${ }^{19} \mathrm{~K}\left(\%, \mathrm{X} \gamma^{\prime}\right)$-фотоядро реакцияларида фон чизикларини хисобга олиш. Межьузовский республиканский си́орник научных статей «Личностный подход в обучении и гуманизиция учебно-воспитательного процесса» СамМИ, Самирканд 2013, c.554-556.
108. М.Х.Жалилов, Ж.Х.Хамросв, А.А.Усаров. Облочечная структура ${ }^{39}$ К. Размышления, мысли, поиски к внсдрению междупародных стандартов форм обучения и воспитания в учебиый процесс. Спмарканд-2014,
109. У.Р.Арзибеков, M.X. Жалилов. Э巾фективность $\mathrm{Ge}(\mathrm{Li})-$ детектора для анализа спектров фотонов в ($\gamma, \mathrm{X} \gamma^{\prime}$) -экспериментах. SamDU uxborotnomasi. Ilmiy maqolalar to'plami, $\mathrm{N}_{2} 3,2014,101 \mathrm{~b}$.
110. Arzibekov U.R., Omonov H.Sh., Julilov M.X. ${ }^{35} \mathrm{Cl}$ yadrosi uchun fotoyadroviy reaksiyalarning parsial kesimlari. «XXI аср - интеллектуал авлод асри» худудий илмий анжуман материаллари, 301-304-бетлар. Навоий 2014, Навоий

давлат кончилик институти нашри.
111. У.Р.Арзибеков, М.Х.Жалилов, Ж.Х.Хамроев, М.К.Ахророва. Полупрямые компонситы распада дипольного гигантского резонанса ядра ${ }^{40} \mathrm{Ca}$. Материалы междунаро,нной конференции «Актуальные проблемы молекулярной спектроскопии кондснсированных сред», Самарканд, 2016, с. 135.
112. Мстодика исследования спектров γ-квантов в реакиии ($\gamma, \mathrm{X} \gamma$ ') в элементах из 1 d 2 s -области. "ХИСТ» ВСЕУКРАЧНСЬКИЙ МЕДИЧНИЙ ЖУРНАЛ МОЛОДИХ ВЧЕНИХ ВИГТУСК 19, 2017.
113. М.Х.Жалилов, У.Р.Арзибеков, Ж.Х.Хальаен. Дипольныね гигантский рсэонанс ядер с числом нсйтроном $\mathrm{N}=20\left({ }^{39} \mathrm{~K}\right.$ и $\left.{ }^{40} \mathrm{Ca}\right)$. Моногрифия. - Самаркннд: Издательство СамМУ, 2022. - 125 с.

ИССЛЕДОВАНИЕ ПАРЦИАЛЬНЫХ КАНАЛОВ ШОТОРАСЩЕПЛЕНИЯ ЯДЕР ${ }^{31}$ И S 32

ОГЛАВЛЕНИЕ

Bbesentre
Г.лава I
Обзор экспериментальных и теоретическихисследований фоторисщепления ядер P^{31} и S^{32}

1. Ниформация о фоторасщеплении ядра ры (0)
2. Эксисримеитальныс исследования фогорасщепления ядра \mathbf{S}^{12} 17
3. Теоретическос описаине фоторасщепления ядра S ${ }^{13}$ 38
1413a II
Экспериментальнос исследование парциальных каналов фоторасщенления ядер P^{31} и \mathbf{S}^{32} методом ($\gamma, \boldsymbol{x} \gamma^{\prime}$)-реакции
4. Мотодика нзмероине спектров γ-квантов, снимаоших возбуждсние консчных ядер 36
5. Спекгры γ-квантов ия рсакции $\mathrm{P}^{\text {I }}\left(\gamma, \mathrm{X} \boldsymbol{\gamma}^{\prime}\right)$ и $\mathrm{S}^{32}\left(\gamma, \mathrm{X} \boldsymbol{\gamma}^{\prime}\right)$. Комнлекс проорамм для обработки γ-сиекгров. 51
6. Экспериментальнье результаты для ядер P^{31} и S^{32}.
Срависиие с болес ранними исслсдованиями. 59
Г. аива III
Оболочечная и изоспиновая структура дгр ядер$\mathbf{P}^{31} \boldsymbol{n} \mathbf{S}^{12}$
7. Спектроскопическис хирактеристики дырочных возӧуждений ядср P^{31} и S^{32} 76
8. Вериятность дипольньх переходов нуклоновразличных оболочек приформировинии ДГР. 83
9. Чистота по изоспину и изоспиновая симметрия нуклонных каналов распада ДГР ядрі $\12 87
10. Восстановленис парииальных фотонсйтронных сечсний ядра S32 из фотопротонного эксперимента 91
11. Нзоспиновые характеристики ДТР ялри ${ }^{31}$ и конкурснция нуклонных каналов его фоторасщепления 101
Глава IV
Полупрямой механизм распада дгр ядер P^{31} и S^{32}
12. Метол оценки полупрямой компоненты парииальных фотонукіонных сечений в области ДТР. 105
13. Полупрямые компоненты пирциальных фотонуклонных сечений и вероятность полуирямого распадаДГР яцра S^{32} 112
14. Оиределение вероятности полупрямого механизма раснада ДГР ядра $\mathrm{P}^{\boldsymbol{\prime}}$ 1210
15. Сравнснис особенностей нолупрямого расицыа и природа ширины ДГР цыя ядер P^{3} и S^{32} 128
3aksinyentue135
Литература137

